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Einstein manifolds, being critical for the Hilbert-Einstein 
functional, are central in Riemannian Geometry and 
Mathematical Physics. A strategy to construct Einstein metrics 
consists on deforming a given metric by a conformal factor so that 
the resulting metric is Einstein. In the present Thesis we follow 
this approach with special emphasis in dimension four.    In this 
Thesis we classify four-dimensional homogeneous conformally 
Einstein manifolds and provide a large family of strictly Bach-flat 
gradient Ricci solitons. We show the existence of Bach-flat 
structures given as deformations of Riemannian extensions by 
means of the Cauchy-Kovalevskaya theorem.
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Introduction

A central problem in pseudo-Riemannian geometry is the existence of “optimal met-
rics”, meaning those whose curvature has the property of being most evenly dis-
tributed about the manifold. The approach to determine such metrics usually focuses
on finding critical metrics for some natural curvature functionals.

Let M be compact and τg denote the scalar curvature of a pseudo-Riemannian
metric g on M . The simplest and most natural curvature functional defined on the
space of metrics is the one given by the integral of the scalar curvature: S : g 7→
S(g) =

∫
M τg dvolg, where dvolg is the volume element determined by the metric g.

A metric g is S-critical if its Einstein tensor ρg− 1
2τgg vanishes, where ρg denotes the

Ricci tensor of (M, g). Since the curvature functional S is sensitive to scalings of the
metric, one restricts its action to metrics within constant volume. The corresponding
critical metrics are the Einstein ones. Hence one could argue that Einstein metrics,
i.e., those whose Ricci tensor is proportional to the metric, are the most natural opti-
mal metrics on a pseudo-Riemannian manifold.

Einstein metrics are somehow meaningless in dimension two. The Gauss-Bonnet
Theorem shows that S(g) = 4πχ[M ], where χ[M ] denotes the Euler characteristic
of M , and thus all metrics are S-critical in dimension two. The three-dimensional
case is very rigid and Einstein metrics are just those of constant sectional curvature.
Hence they are locally isometric to a pseudo-sphere, to a pseudo-Euclidean space or
to a pseudo-hyperbolic space. The first non-trivial situation occurs in dimension four,
where non-trivial examples exist. The classification of four-dimensional Einstein
metrics is a widely open problem and a central question is the existence of such
metrics.

There are several strategies to construct Einstein metrics. A classical one con-
sists on deforming a given metric by a conformal factor so that the metric becomes
Einstein after a suitable conformal rescaling. In this case (M, g) is said to be con-
formally Einstein, i.e., if there is an Einstein representative of the conformal class
[g]. A second more recent strategy makes use of the Ricci flow which under suitable
conditions converges to an Einstein metric. There are however metrics which remain
invariant (up to scaling and diffeomorphisms) by the Ricci flow: the Ricci solitons.

xvii



INTRODUCTION

Brinkmann showed in [14] that an n-dimensional manifold (M, g) is conformally
Einstein if and only if the equation

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (1)

has a positive solution. Even though in dimension 2 the equation is trivial, in higher
dimensions the integration is surprisingly difficult and the equation above is overde-
termined in most cases. Furthermore the conformally Einstein metric, if exists, it is
unique up to homotheties in the Riemannian setting [14, 106]. An important issue
is, therefore, to characterize conformally Einstein spaces by some more manageable
tensorial equations.

Let (M, g) be conformally Einstein and assume g = e2σg to be Einstein. Since
Einstein metrics have harmonic Weyl tensor one trivially has divW = 0, where W
denotes the Weyl conformal curvature tensor of (M, g). The fact that the Weyl tensor
rescales under conformal transformations gives that

(div4W )(X,Y, Z) +W (X,Y, Z,∇σ) = 0

is a necessary condition for (M, g) to be conformally Einstein. A second necessary
condition is obtained as follows. Let W : g 7→ W(g) =

∫
M ‖W‖

2 dvolg be the
curvature functional determined by the L2-norm of the Weyl conformal curvature
tensor. W-critical metrics where characterized by Bach in [6], showing that a four-
dimensional metric isW-critical if and only if the Bach tensor B = div2 div4W +
1

2
W [ρ] vanishes identically. Clearly any Einstein metric is Bach-flat (B = 0). More-

over, a specific feature of dimension four is thatW is conformally invariant and thus
conformally Einstein metrics are Bach-flat in dimension four.

Kozameh, Newman and Tod showed in [72] that the two necessary conditions:

(i) B = 0, (ii) (div4W )(X,Y, Z) +W (X,Y, Z,∇σ) = 0, (2)

are also sufficient to be conformally Einstein if (M, g) is weakly-generic, i.e., the
Weyl tensor viewed as a map TM →

⊗3 TM is injective. In the Kähler case the
situation is simpler, since any Bach-flat Riemannian Kähler metric is conformally
Einstein [48]. Despite all these results, the classification of conformally Einstein
manifolds is an open question nowadays, with only partial results available. See for
example [75] for a recent classification of conformally Einstein product manifolds.

Our purpose on Part I of this thesis is to address the classification of four-dimen-
sional conformally Einstein metrics in the homogeneous case. The homogeneity
assumption allows a simplification of the conformally Einstein equation, reducing
Equation (1) to a system of algebraic equations by using the conditions in Equa-
tion (2). Four-dimensional homogeneous Einstein metrics were described by Jensen

xviii



INTRODUCTION

[70], who showed that they are symmetric in the Riemannian case. Hence they are
locally a real or complex space form or locally a product of two surfaces of constant
equal Gauss curvature. The conformally Einstein situation is richer and Chapter 2 is
devoted to prove the following classification result.

Theorem 2.1. Let (M, g) be a four-dimensional complete and simply connected con-
formally Einstein homogeneous Riemannian manifold. Then (M, g) is locally sym-
metric or otherwise it is homothetic to one of the Lie groups determined by the fol-
lowing solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) The Lie algebra gα = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = e1−αe2, [e4, e2] = αe1+e2, [e4, e3] = 2e3 .

(iii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Here {e1, . . . , e4} is an orthonormal basis. Moreover, the Lie groups (Gα, 〈 · , · 〉) in
Assertion (ii) are half conformally flat.

In addition to four-dimensional conformally Einstein metrics, the Hirzebruch sig-
nature formula shows that self-dual and anti-self-dual metrics are also Bach-flat. As
a consequence of the analysis in Chapter 2 we obtain a classification of homogeneous
metrics which are strictly Bach-flat, i.e., those which are neither half conformally flat
nor conformally Einstein, as follows:

Theorem 2.4. Let (M, g) be a four-dimensional complete and simply connected
strictly Bach-flat homogeneous Riemannian manifold. Then (M, g) is homothetic
to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra g = Re4 n e(1, 1) given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .

(ii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Here {e1, . . . , e4} is an orthonormal basis.
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INTRODUCTION

It is worth emphasizing that the two examples in Theorem 2.4 were previously
constructed by Abbena, Garbiero and Salamon [1].

A crucial step in the proof of Theorem 2.1 and Theorem 2.4 is the description of
four-dimensional homogeneous Riemannian manifolds by Bérard-Bergery [9]: they
are either symmetric or a Lie group with a left-invariant Riemannian metric. An
analogous statement clearly fails in the Lorentzian and neutral signature cases, since
pseudo-Riemannian homogeneous spaces are not necessarily reductive.

Non-reductive four-dimensional homogeneous spaces were classified by Fels and
Renner [54], and we explicitly use their classification to determine all non-reductive
conformally Einstein metrics in Chapter 3 as follows:

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.

(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary
constants with ab 6= 0 and b 6= −q, or
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(R4, g−) with metric given by

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

A second more recent approach to the construction of Einstein metrics is given
by the Ricci flow, i.e., a one-parameter family of metrics g(t) on a manifoldM which
satisfies the equation ∂

∂tg(t) = −2ρg(t). The Ricci flow is well-posed in the Riemann-
ian context in the sense that for any closed manifold M and any initial metric g(0),
there is a unique solution g(t) for sufficiently small t. Hamilton [64] showed that the
Ricci flow converges to an Einstein metric under suitable conditions thus showing
the existence of Einstein metrics. It is an important observation that, if the initial
metric g(0) is Einstein, then it remains invariant under the flow (up to homothetical
scaling). Furthermore a solution of the flow is said to be self-similar if it remains
invariant up to scalings and diffeomorphisms. Such solutions –usually referred to as
Ricci solitons– are characterized by the existence of a vector field X on M so that

LXg + ρ = λg, (3)

where L denotes the Lie derivative and λ is a real constant. Ricci solitons are there-
fore generalizations of Einstein metrics and their classification is an important issue
in understanding the Ricci flow. If X is a gradient, then Equation (3) becomes

Hesf +ρ = λg, (4)

for some potential function f and (M, g, f) is called a gradient Ricci soliton. The
geometry of the Ricci tensor strongly depends on the sign of the Ricci curvatures.
While positive Ricci curvature is a strong condition with topological consequences,
Lohkamp [80] showed that any manifold admits complete metrics with negative Ricci
curvature. Correspondingly, the study of Ricci solitons depends on the sign of the
soliton constant λ; a Ricci soliton (M, g,X) is called shrinking, steady or expanding
if λ > 0, λ = 0 or λ < 0, respectively.

While there exist several classification results for gradient Ricci solitons, the
generic case (3) is still pretty unknown. Even in the homogeneous case a complete
classification is not yet available in dimension four. Since all Bach-flat left-invariant
Riemannian metrics are realized on solvable Lie groups (cf. Theorem 2.1 and Theo-
rem 2.4) one has the following description of homogeneous Bach-flat Ricci solitons.
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INTRODUCTION

Theorem 2.16. Let (M, g) be a four-dimensional complete and simply connected
Bach-flat Riemannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally
conformally flat gradient Ricci soliton N3(c) × R, where N3(c) is a space form, or
homothetic to one of the algebraic Ricci solitons determined by the following solvable
Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

The gradient Ricci soliton Equation (4) encodes geometric information of the
manifold in terms of the Ricci curvature and the second fundamental form of the
level sets of the potential function f . Since the Ricci tensor completely determines
the curvature in the locally conformally flat case, substantial progress have been made
towards a classification of gradient Ricci solitons under some assumptions on the
Weyl curvature. Locally conformally flat gradient Ricci solitons are locally warped
products with one-dimensional base in the Riemannian case [55] and a complete
description is available in the complete shrinking and steady cases [35, 94]. The
Lorentzian situation allows another family of examples whose underlying structure
is that of a plane wave [17].

Weaker assumptions on the Weyl conformal tensor have been investigated, half
conformal flatness being an important example. While (anti-)self-dual gradient Ricci
solitons are locally conformally flat in the Riemannian setting [39], the neutral signa-
ture case allows non-trivial examples [16] given by Riemannian extensions of affine
gradient Ricci solitons. Generalizing the half conformally flat situation, Bach-flat
gradient Ricci solitons have been investigated in [34]. Complete Bach-flat shrinking
gradient Ricci solitons, as well as steady gradient Ricci solitons of positive Ricci cur-
vature whose scalar curvature attains a maximum at some interior point, are locally
conformally flat in the Riemannian category.

Our purpose in Part II of this thesis is to show the existence of strictly Bach-flat
gradient Ricci solitons in the neutral signature case. This question is motivated by
the existence of self-dual gradient Ricci solitons which are not locally conformally
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flat [16]. The desired metrics are constructed by a perturbation of the classical Rie-
mannian extensions introduced by Patterson and Walker [92]. Let (Σ, D) be an affine
surface and let T and Φ be a parallel (1, 1)-tensor field and an arbitrary symmetric
(0, 2)-tensor field on Σ, respectively. The data (Σ, D, T,Φ) determines a neutral
signature metric on the cotangent bundle T ∗Σ given by

gD,Φ,T = ιT ◦ ιT + gD + π∗Φ, (5)

where ι denotes the evaluation map on the cotangent bundle, π : T ∗Σ → Σ is the
canonical projection and gD is the Patterson-Walker’s Riemannian extension.

In Chapter 4, we show that the metrics in Equation (5) provide a large family of
strictly Bach-flat manifolds. Indeed:

Theorem 4.1. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel
(1, 1)-tensor field T . Let Φ be an arbitrary symmetric (0, 2)-tensor field on Σ. Then
the Bach tensor of (T ∗Σ, gD,Φ,T ) vanishes if and only if T is either a multiple of the
identity or nilpotent.

If T is a multiple of the identity, then the metrics gD,Φ,T are self-dual and thus
we are specially interested in the nilpotent case (T 2 = 0, T 6= 0). Moreover, since
the deformation tensor field Φ does not play any role in Theorem 4.1 it may be used
to construct an infinite family of non-isometric Bach-flat metrics for any given data
(D,T ) on Σ. A suitable choice of Φ enables the construction of the desired new
examples of Bach-flat gradient steady Ricci solitons, where as a matter of notation,
Φ̂(X,Y ) = Φ(TX, TY ) in Equation (6).

Theorem 4.6. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let h ∈ C∞(Σ)
be a smooth function. Then (T ∗Σ, gD,Φ,T , f = h ◦ π) is a Bach-flat gradient Ricci
soliton if and only if dh(ker(T )) = 0 and

Φ̂ = −HesDh −2ρDs . (6)

Moreover the soliton is steady and isotropic.

We emphasize that the corresponding potential function has degenerate level set
hypersurfaces and their underlying structure is never locally conformally flat, in sharp
contrast with the Riemannian situation. The pseudo-Riemannian metrics in Theo-
rem 4.1 are never self-dual, but they can be anti-self-dual in some cases. This fact
allows the construction of anti-self-dual gradient Ricci solitons which are not locally
conformally flat, just requiring that both T and Φ are parallel.
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Theorem 4.12. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field Φ.

(i) (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only
if (T ∗Σ, g

D,Φ̂,T
, f = h ◦ π) is an anti-self-dual steady gradient Ricci soliton

which is not locally conformally flat.

(ii) (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if
there exist local coordinates (u1, u2) on Σ so that the only non-zero Christoffel
symbol is given by uΓ11

2 = P (u1)+u2Q(u1) and the potential function h(u1)
is determined by h′′(u1) = −2Q(u1), for any P,Q ∈ C∞(Σ).

The constructions in Chapter 4 require the existence of affine surfaces admitting
a parallel nilpotent tensor field, which is a rather restrictive condition. We therefore
investigate in Chapter 5 the existence of parallel (1, 1)-tensor fields on affine surfaces.
One says that a tensor field T is a Kähler (resp. para-Kähler) structure if T is parallel
and T 2 = − Id (resp. T 2 = Id). T is nilpotent Kähler if T 2 = 0 and DT = 0. Since
the trace of any parallel tensor is constant, one may express T = 1

2 tr(T ) Id +(T −
1
2 tr(T ) Id) so that it decomposes into a scalar multiple of the identity and a trace free
tensor field.

If (Σ, D) is an affine surface with skew-symmetric Ricci tensor ρDsk 6= 0, then ρDsk
defines a volume element. Moreover, ρDsk is said to be recurrent, i.e., DρDsk = ω⊗ρDsk
for some one-form ω. Parallel trace free (1, 1)-tensor fields can be rescaled to be
either Kähler, para-Kähler or nilpotent Kähler with a recurrent condition as follows:

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recur-
rent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is
recurrent.

(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and
recurrent.

Surfaces with skew-symmetric Ricci tensor (equivalently, ρDs = 0) admit Kähler,
para-Kähler and nilpotent Kähler structures simultaneously (see Lemma 5.6). We use
homogeneous affine surfaces to illustrate Theorem 5.1, showing that all the different
possibilities are realizable. The results in Section 5.3 give explicit expressions of all
parallel nilpotent Kähler structures on homogeneous surfaces.
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Finally in Chapter 6, we consider some generalizations of Theorem 4.1 to con-
struct Riemannian extensions with non-parallel tensor field T which are Bach-flat.
Theorem 6.1 extends the construction in Theorem 4.1, showing that the modified
Riemannian extension (T ∗Σ, gD,Φ,T ) determined by a non-parallel nilpotent tensor
field T remains Bach-flat under some conditions on the affine connection. The un-
derlying question relies on determining the conditions on the connection once the
nilpotent endomorphism is given. Conversely, one may consider the reverse prob-
lem of constructing nilpotent endomorphisms on Σ such that the modified Riemann-
ian extension (5) is Bach-flat once the connection D is given. We use the Cauchy-
Kovalevski Theorem to show that any Patterson-Walker Riemannian extension may
be locally deformed by a suitable nilpotent endomorphism field to be Bach-flat in the
real analytic category.

Theorem 6.7. Let (Σ, D) be a real analytic affine surface. Then there exist locally
defined nilpotent (1, 1)-tensor fields T such that the modified Riemannian extension
(T ∗Σ, gD,Φ,T ) is Bach-flat.

It is a remarkable fact that modified Riemannian extensions (5) have vanishing
scalar curvature invariants if and only if T is nilpotent (cf. Theorem 6.8). Hence
we introduce some new invariants in Section 6.3 which are not of Weyl type. These
invariants, which strongly depend on the Ricci curvature of (Σ, D), allow one to
distinguish some isometry classes of Bach-flat metrics.
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Chapter 1

Preliminaries

Throughout this chapter we will introduce some concepts and notation that will be
necessary in the development of this thesis. We shall omit most of the proofs and
instead provide references for more details.

1.1 Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold (M, g) is a smooth manifold M of dimension n
equipped with a metric tensor, i.e., with a symmetric and non-degenerate (0, 2)-tensor
field. A non-zero vector v ∈ TpM is called timelike if g(v, v) < 0, spacelike if
g(v, v) > 0 or null if g(v, v) = 0. We denote by S−p (M), S+

p (M), S0
p(M) the set of

timelike unit vectors, spacelike unit vectors and null vectors, respectively, at a point
p ∈M .

Recall that the signature of the metric g is the pair (n − ν, ν) such that n − ν
is the number of negative eigenvalues and ν is the number of positive eigenvalues in
the associated matrix. For example, an n-dimensional pseudo-Riemannian manifold
(M, g) is Riemannian if the signature is (0, n) and Lorentzian if the signature is
(1, n − 1). Moreover, if n is even and the signature of g is (n2 ,

n
2 ) then the manifold

has neutral signature. We denote by TM and T ∗M the tangent and the cotangent
fiber bundles of the corresponding manifold. Let X(M) be the space of tangent
vector fields to M . We represent vector fields by X,Y, Z, . . . and tangent vectors at
a given point by x, y, z, . . . .

For any pseudo-Riemannian manifold (M, g) there exists a unique adapted linear
connection∇ which is torsion free and parallel, i.e.,

∇XY −∇YX − [X,Y ] = 0 and ∇g = 0 .

Such connection is called the Levi-Civita connection. The Koszul formula gives the
following expression of the Levi-Civita connection:

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y ))

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

1
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where X,Y, Z ∈ X(M) and [·, ·] represents the Lie bracket. The connection can be
characterized by means of the Christoffel symbols. Let (x1, . . . , xn) be local coordi-
nates. We define the Christoffel symbols of the first kind by

Γij` =
1

2

(
∂g`j
∂xi

+
∂g`i
∂xj
− ∂gij
∂x`

)
and the Christoffel symbols of the second kind by

Γij
k = gk`Γij`,

where (gαβ) denote the inverse matrix of (gαβ). Therefore, we obtain

∇∂xi∂xj = Γij
k∂xk ,

where we use the notation ∂xi := ∂
∂xi

to represent the locally defined coordinate
vector fields.

1.1.1 Differentiable operators

Let (M, g) be a pseudo-Riemannian manifold and let f : M → R be a differentiable
function. We define the gradient operator ∇ : C∞(M)→ X(M) on M as follows:

g(∇f,X) = X(f), for all X ∈ X(M) .

In a system of local coordinates (x1, . . . , xn), the gradient of the function f is given
by:

∇f =
n∑

i,k=1

gik
∂f

∂xk
∂xi .

The Hessian operator of f is defined by the endomorphism hf : X(M)→ X(M)
given by the second covariant derivative

hf (X) = ∇X∇f .

Now, we can define a new symmetric tensor field of type (0, 2), the Hessian tensor
Hesf , given by

Hesf (X,Y ) = g(hf (X), Y ) = g(∇X∇f, Y ) = XY f − (∇XY )f .

In terms of a local coordinate system the Hessian tensor is given by:

Hesf (∂xi , ∂xj ) =
∂2f

∂xi∂xj
+

1

2
gk`
(
∂gij
∂x`
−
∂g`j
∂xi
− ∂g`i
∂xj

)
∂f

∂xk

=
∂2f

∂xi∂xj
− Γij

k ∂f

∂xk
.

2
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We define the divergence of a vector field X by the function divX = tr(∇X).
Considering an orthonormal frame {E1, . . . , En} we have

divX =
∑

εig(∇EiX,Ei),

where εi = g(Ei, Ei). In general, if T is a tensor field of type (0, s), we define the
divergence on the r-th argument as the (0, s− 1)-tensor field given by

(divr T )(X1, . . . , Xs−1) =
n∑
i=1

εi(∇EiT )(X1, . . . , Xr−1, Ei, Xr, . . . , Xs−1),

for all X1, . . . , Xs−1 ∈ X(M). Since r-divergence of T is given by the r-th trace of
∇T the definition above does not depend on the choice of the local frame.

1.1.2 The curvature tensor

The Levi-Civita connection having been defined, we introduce the curvature opera-
tor, denoted by R, or curvature tensor of type (1,3) by setting

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z .

In local coordinates (x1, . . . , xn) the components of the curvature tensor are
given by R(∂xi , ∂xj )∂xk = Rijk

`∂x` . The curvature tensor of type (0,4) is given
by

R(X,Y, Z, V ) = g(R(X,Y )Z, V ) .

Hence its components are given by Rijk` = g`rRijk
r.

The curvature tensor has the following algebraic symmetries:

a) R(X,Y, Z, V ) = −R(Y,X,Z, V ) = −R(X,Y, V, Z),

b) R(X,Y, Z, V ) +R(Y,Z,X, V ) +R(Z,X, Y, V ) = 0, (1.1)

c) R(X,Y, Z, V ) = R(Z, V,X, Y ),

and the differential identity

d) (∇XR)(Y,Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X,Y, U, V ) = 0 .

Identities b) and d) are known as the first Bianchi identity and the second Bianchi
identity, respectively. A tensor of type (0, 4), A : V × V × V × V → R, on a vector
space V is called an algebraic curvature tensor if it satisfies the identities (1.1).

3
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The sectional curvature of a given Riemannian manifold (M, g) is the real func-
tion κ defined on the Grassmannian of 2-planes by

κ(π) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
,

where π = 〈{X,Y }〉 is a two-dimensional subspace of TpM .
In the pseudo-Riemannian setting one must consider the restriction to the Grass-

mannian of non-degenerate planes, i.e., those where

g(X,X)g(Y, Y )− g(X,Y )2 6= 0 .

If κ(π) is independent of π ⊂ TpM , then the curvature tensor is given by

R(X,Y, Z, V ) = κR0(X,Y, Z, V ),

where R0 is the standard algebraic curvature tensor given by

R0(X,Y, Z, V ) = g(X,Z)g(Y, V )− g(X,V )g(Y, Z) .

If M is connected and dim(M) ≥ 3, then the second Bianchi identity guar-
antees that κ is necessarily a global constant if it is pointwise constant. A pseudo-
Riemannian manifold of constant sectional curvature is locally isometric to a pseudo-
sphere Snν , to a pseudo-Euclidean space Enν or to a pseudo-hyperbolic space Hn

ν de-
pending on the sign κ > 0, κ = 0 or κ < 0 and the signature ν (see [88]).

We denote by ρ the Ricci tensor defined by

ρ(X,Y ) = tr(Z 7→ R(X,Z)Y )

and the Ricci operator, Ric, which is the associated (1, 1)-tensor field defined by
g(Ric(X), Y ) = ρ(X,Y ). The curvature identities (1.1) show that the Ricci tensor
is symmetric, or equivalently, the Ricci operator is self-adjoint. Moreover the scalar
curvature τ is given by

τ = tr(Ric) .

The Ricci tensor and the scalar curvature can be expressed in coordinates by

ρij = gr`Rirj`, τ = gijρij .

Any two-dimensional pseudo-Riemannian manifold satisfies ρ = τ
2g. A pseudo-

Riemannian manifold of dimension n ≥ 3 is called an Einstein space if its Ricci
tensor is a constant multiple of the metric, ρ = λg. Tracing on the previous expres-
sion one gets

ρ =
τ

n
g, (1.2)

4
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and using the second Bianchi identity we obtain that τ is constant, for M connected
and dim(M) ≥ 3.

In dimension 3, the Einstein condition is equivalent to constant sectional curva-
ture. In dimension n ≥ 4, there exist Einstein metrics which are not of constant
sectional curvature. For instance S2 × S2 is Einstein but the sectional curvature is
clearly not constant. Dimension four appears therefore as the first non-trivial case for
consideration.

1.1.3 The Weyl tensor

Let D and B be two symmetric bilinear forms on a vector space V . The Kulkarni-
Nomizu product D �B is the (0, 4)-tensor on V defined as follows:

(D �B)(x, y, z, v) = D(x, z)B(y, v) +D(y, v)B(x, z)

−D(x, v)B(y, z)−D(y, z)B(x, v),

where x, y, z, v ∈ V . An easy calculation shows thatD�B is an algebraic curvature
tensor on (V, 〈·, ·〉), i.e., a (0,4)-tensor on V satisfying the algebraic identities (1.1)
of the curvature tensor. As a basic example, the standard algebraic curvature tensor
R0 is given by R0 = 1

2〈·, ·〉 � 〈·, ·〉.
The Schouten tensor, S, of an algebraic curvature tensor A on an n-dimensional

inner product vector space (V, 〈·, ·〉) is the symmetric tensor field of type (0, 2) de-
fined by

SA =
1

n− 2

(
ρA −

τA
2(n− 1)

〈·, ·〉
)
,

where ρA and τA are the Ricci tensor and the scalar curvature associated to A.
The Weyl tensor arises from the Kulkarni-Nomizu product of the Schouten tensor

and the metric tensor; WA = A − SA � 〈 · , · 〉. Hence the Weyl tensor, W , of a
pseudo-Riemannian manifold (M, g) is defined by:

W = R−S� g,

or equivalently at each point p ∈M

W (x, y, z, v) = R(x, y, z, v) + τ
(n−1)(n−2)

{
g(x, z)g(y, v)− g(x, v)g(y, z)

}
− 1

(n−2)

{
ρ(x, z)g(y, v)− ρ(x, v)g(y, z) + ρ(y, v)g(x, z)− ρ(y, z)g(x, v)

}
,

for all x, y, z, v ∈ TpM .
An important property of the Weyl tensor to be used in this work is that it is trace

free. Indeed, one has:

5
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Lemma 1.1. The Ricci curvature of the Weyl conformal tensor vanishes identically.

Proof. Let {E1, E2, . . . , En} be a pseudo-orthonormal frame, where g(Ei, Ej) =
εiδij and εi ∈ {±1}. We denote by ρW (X,Y ) = tr(Z → W (X,Z)Y ) the Ricci
tensor of the Weyl conformal tensor. Then,

ρW =
∑
i

εiW (X,Ei, Y, Ei)

= ρ(X,Y ) + τ
(n−1)(n−2)

{
n g(X,Y )− g(X,Y )

}
− 1
n−2

{
nρ(X,Y )− ρ(X,Y ) + τ g(X,Y )− ρ(X,Y )

}
= ρ(X,Y ) + τ

n−2g(X,Y )− ρ(X,Y )− τ
n−2g(X,Y ) = 0 .

A pseudo-Riemannian manifold (M, g) is called locally conformally flat if for
each point p ∈ M there exists an open neighborhood U of p and a smooth function
σ : U → R so that the metric ḡ = e2σg is flat.

The vanishing of the Weyl tensor characterizes locally conformally flat spaces in
dimension n ≥ 4. Observe that W = 0 in dimension n = 3. In fact, 3-dimensional
locally conformally flat manifolds are characterized by the total symmetry of the
covariant derivative of the Schouten tensor (∇XS)(Y,Z) = (∇YS)(X,Z) [73].
Explicitly one has:

(∇XS)(Y,Z)− (∇YS)(X,Z)

= 1
(n−2)

{
(∇Xρ)(Y, Z)− (∇Y ρ)(X,Z)

− 1
2(n−1)(X(τ)g(Y, Z)− Y (τ)g(X,Z))

}
.

At the level of local differential geometry, the most important invariant of a conformal
structure is given by the conformal Weyl tensor, which satisfies W̄ = e2σW for any
two conformally related metrics ḡ = e2σg.

1.2 Curvature decomposition

Given an n-dimensional real vector space V with basis {e1, . . . , en}, a bivector of V
is an element of the form

n∑
i,j=1

aijei ∧ ej ,

6
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where aij ∈ R. The set of all elements of this form is called the bivector space Λ2V .
It has the following properties:

• ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0 ∀i, j ∈ {1, . . . , n}.

• The set e1 ∧ e2, . . . , e1 ∧ en, e2 ∧ e3, . . . , en−1 ∧ en is a basis of Λ2V.

In consequence, Λ2V has a vector space structure of dimension n(n−1)
2 . We define

the wedge product of two elements x, y ∈ V , with x = xiei and y = yjej , by:

x ∧ y =

(
n∑
i=1

xiei

)
∧

 n∑
j=1

yjej

 =
∑
i<j

(xiyj − xjyi)ei ∧ ej ∈ Λ2V .

Let 〈·, ·〉 be an inner product on V . Then, it naturally extends to an inner product
〈〈·, ·〉〉 on Λ2V as follows (see for example [73]):

〈〈x ∧ y, z ∧ t〉〉 = 〈x, z〉〈y, t〉 − 〈x, t〉〈y, z〉 . (1.3)

Moreover, if {e1, . . . , en} is a 〈·, ·〉-orthonormal basis of V , then ei ∧ ej (i < j) is a
〈〈·, ·〉〉-orthonormal basis of Λ2V .

Each algebraic curvature tensor in (V, 〈·, ·〉) induces a unique self-adjoint en-
domorphism in (Λ2V, 〈〈·, ·〉〉) as follows. Given a curvature tensor A, we define the
endomorphism Ã : Λ2V → Λ2V by

〈〈Ã(x ∧ y), z ∧ w〉〉 = A(x, y, z, w) for all x, y, z, w ∈ V .

The converse is not true in general since a given self-adjoint endomorphism of Λ2V
may fail to satisfy the first Bianchi identity. There exists a bijective correspondence
between the set of algebraic curvature tensors A and the set Ã of self-adjoint endo-
morphisms of Λ2V satisfying

〈〈Ã(X ∧ Y ), Z ∧ T 〉〉+ 〈〈Ã(Y ∧ Z), X ∧ T 〉〉+ 〈〈Ã(Z ∧X), Y ∧ T 〉〉 = 0 .

In particular, the standard curvature tensor R0 corresponds to the endomorphism
R̃0 = IdΛ2 .

The following result provides a decomposition of any algebraic curvature tensor.
It is also a motivation for the previously described tensors previously.

Theorem 1.2. [73] Let A be an algebraic curvature tensor in an n-dimensional
inner product vector space (V, 〈·, ·〉). Then it decomposes as:

A = UA + ZA +WA,

7
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where

UA =
τA

2n(n− 1)
〈·, ·〉 � 〈·, ·〉, ZA =

1

n− 2

(
ρA −

τA
n
〈·, ·〉

)
� 〈·, ·〉

and WA = A − UA − ZA = A − SA � 〈·, ·〉 is the Weyl tensor associated to the
algebraic curvature tensor A.

The components UA,ZA,WA in Theorem 1.2 correspond to the following:

• UA is the orthogonal projection on the space of algebraic curvature tensors of
constant sectional curvature.

• The vanishing of the component ZA corresponds with Einstein algebraic cur-
vature tensors.

• In dimension ≥ 4, the vanishing of the component WA represents locally con-
formally flat algebraic curvature tensors.

1.3 Self-duality and anti-self-duality

We work at the purely algebraic setting and assume dim(V ) = 4. Let {e1, . . . , e4}
be an orthonormal basis of (V, 〈·, ·〉). Then it follows from Equation (1.3) that

〈〈e1 ∧ e2, e1 ∧ e2〉〉 = 〈e1, e1〉〈e2, e2〉 − 〈e1, e2〉〈e2, e1〉 = ε1ε2,

〈〈e1 ∧ e3, e1 ∧ e3〉〉 = 〈e1, e1〉〈e3, e3〉 − 〈e1, e3〉〈e3, e1〉 = ε1ε3,

〈〈e1 ∧ e4, e1 ∧ e4〉〉 = 〈e1, e1〉〈e4, e4〉 − 〈e1, e4〉〈e4, e1〉 = ε1ε4,

〈〈e2 ∧ e3, e2 ∧ e3〉〉 = 〈e2, e2〉〈e3, e3〉 − 〈e2, e3〉〈e3, e2〉 = ε2ε3,

〈〈e2 ∧ e4, e2 ∧ e4〉〉 = 〈e2, e2〉〈e4, e4〉 − 〈e2, e4〉〈e4, e2〉 = ε2ε4,

〈〈e3 ∧ e4, e3 ∧ e4〉〉 = 〈e3, e3〉〈e4, e4〉 − 〈e3, e4〉〈e4, e3〉 = ε3ε4,

where εi = 〈ei, ei〉. If 〈·, ·〉 is positive definite then so is 〈〈·, ·〉〉, while if 〈·, ·〉 has
neutral signature then 〈〈·, ·〉〉 is an inner product of signature (4, 2) on Λ2V .

Now, let vol := e1 ∧ e2 ∧ e3 ∧ e4 be a volume element on V and define the
Hodge-star operator ? : Λ2V → Λ2V by α ∧ ?β = 〈〈α, β〉〉 · vol for all α, β ∈ Λ2V .
This operator satisfies the following properties in Riemannian or neutral signature:

(i) ?2 = IdΛ2V ,

(ii) ? is a self-adjoint operator.

8
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The case when (V, 〈·, ·〉) is of Lorentzian signature is essentially different since in
this setting one has ?2 = − IdΛ2V , thus defining a complex structure on Λ2V and the
induced inner product is of neutral signature (3, 3).

The action of the Hodge-star operator on the basis {ei ∧ ej} is determined by:

?(e1∧ e2) = ε3ε4e3∧ e4, ?(e1∧ e3) = −ε2ε4e2∧ e4, ?(e1∧ e4) = ε2ε3e2∧ e3,

where the remaining elements are obtained using that ?2 = ± IdΛ2V , depending on
the signature of (V, 〈·, ·〉).

In the Riemannian and neutral signature cases, since ?2 = IdΛ2V , the eigenspaces
corresponding to the eigenvalues ±1 of ? decompose Λ2V as Λ2V = Λ2

+ ⊕ Λ2
−,

where

Λ2
+V = {α ∈ Λ2V | ?α = α}, Λ2

−V = {α ∈ Λ2V | ?α = −α} .

The space Λ2
+V is called the space of self-dual 2-forms and Λ2

−V is called the
space of anti-self-dual 2-forms. Furthermore, for any algebraic curvature tensor A
on (V, 〈·, ·〉) the associated Weyl tensor satisfies ?W̃A = W̃A? and thus the endomor-
phism W̃A decomposes accordingly.

Hence an algebraic curvature tensor A on (V, 〈·, ·〉) is said to be self-dual (resp.
anti-self-dual) if W̃A(Λ2

−V ) ≡ 0 (resp. W̃A(Λ2
+V ) ≡ 0). Further, A is said to be

locally conformally flat if WA = 0. Whenever the orientation is not specified, we
will say that A is half conformally flat if A is either self-dual or anti-self-dual.

The half conformally flat condition can now be stated in terms of the components
of the Weyl tensor in an orthonormal basis as follows.

Lemma 1.3. [21] (V, 〈·, ·〉, A) is half conformally flat if and only if

WA(e1, ei, x, y) = σijkεjεkWA(ej , ek, x, y),

for each x, y ∈ V , where {i, j, k} = {2, 3, 4}, σijk is the signature of the corre-
sponding permutation and {e1, e2, e3, e4} is an orthonormal basis of (V, 〈·, ·〉).

Since we are interested in pseudo-Riemannian manifolds, we can reformulate the
half conformally flat condition in the previous lemma for a pseudo-orthonormal basis
{t, u, v, w}, i.e., a basis of (V, 〈·, ·〉) so that the inner product expresses as

〈·, ·〉 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (1.4)

i.e., the only non-zero products are given by 〈t, v〉 = 〈v, t〉 = 〈u,w〉 = 〈w, u〉 = 1.

9
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Lemma 1.4. [21] (V, 〈·, ·〉, A) is half conformally flat if and only if

WA(t, v, x, y) = WA(u,w, x, y), WA(t, w, x, y) = 0, WA(u, v, x, y) = 0,

for all x, y ∈ V , where {t, u, v, w} is a pseudo-orthonormal basis of (V, 〈·, ·〉).

Let (M, g) be an oriented four-dimensional pseudo-Riemannian manifold of Rie-
mannian or neutral signature. Then, M is called self-dual (resp. anti-self-dual) if
(TpM, gp, Rp) is self-dual (resp. anti-self-dual) for all p ∈M . If any of the previous
cases occur then (M, g) is called half conformally flat.

1.4 Conformal transformations and Einstein manifolds

In this section we consider conformal deformations of pseudo-Riemannian metrics
with special attention to their influence on the curvature.

1.4.1 Conformal transformations

A conformal map between two pseudo-Riemannian manifolds (M, g) and (M, g) is
a smooth map F : (M, g) → (M, g) such that F ∗g = ϕ−2g, for a non-zero smooth
function ϕ : M → R, i.e.,

gF (p)(F∗(p)X,F∗(p)Y ) = ϕ−2(p)gp(X,Y ) for all p ∈M,

and anyX,Y ∈ X(M). Moreover, two pseudo-Riemannian manifolds are conformal
if there is a conformal map between them. Conformallity defines an equivalence
relation in the space of metrics and we denote by [g] the conformal class of a pseudo-
Riemannian metric g.

Weyl showed in [103] that, although the definition ofW evidently depends on the
metric g, the Weyl tensorW actually depends on the conformal class of the metric. If
two metrics g = ϕ−2g are conformally equivalent, then the Weyl conformal tensors
W and W of type (1,3) are equal to each other. However, the corresponding Weyl
conformal tensors of type (0,4) rescale as W = ϕ−2W . The converse is true if
W = 0 in which case both metrics are locally conformally flat, but not in general.
Hall [63] showed that in dimension four the following partial converse holds.

Theorem 1.5. [63] Let (M, g) be a four-dimensional Riemannian manifold. Let g
be a Riemannian metric on M so that the Weyl conformal curvature tensors of type
(1, 3) satisfy W = W on some open set U ⊂ M where W 6= 0. Then g and g are
conformally related on U .

10
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Since we are interested in Einstein metrics one may wonder how the Einstein
condition behaves under conformal transformations. The following lemma follows
after some standard calculations.

Lemma 1.6. [73] Let (M, g) be a pseudo-Riemannian manifold of dimension n and
let ϕ : M → R be a non-zero smooth function. If we consider in M the metric given
by g = ϕ−2g then one has:

(i) If∇ and ∇ denote the Levi-Civita connections of g and g, respectively, then

∇XY −∇XY = −X(logϕ)Y − Y (logϕ)X + g(X,Y )∇(logϕ) . (1.5)

(ii) If R and R denote the curvature tensors of type (0, 4) of g and g, respectively,
then

R(X,Y )Z −R(X,Y )Z =〈∇X∇(logϕ), Z〉Y + 〈∇Y∇(logϕ), Z〉X

− 〈X,Z〉∇Y∇(logϕ) + 〈Y,Z〉∇X∇(logϕ)

+ (Y logϕ)(Z logϕ)X − (X logϕ)(Z logϕ)Y

− 〈∇(logϕ),∇(logϕ)〉 ·R0(X,Y )Z

+ ((X logϕ)〈Y,Z〉 − (Y logϕ)〈X,Z〉)∇ logϕ .

(iii) If ρ and ρ denote the Ricci tensors of g and g, respectively, then

ρ− ρ = ϕ−2((n− 2) · ϕHesϕ +(ϕ∆ϕ− (n− 1)‖∇ϕ‖2)g),

where ∆ϕ = trg(Hesϕ) is the Laplacian.

Assertion (iii) in Lemma 1.6 shows that the Einstein condition is not necessarily
preserved by a conformal transformation. The following result was originally proven
by Brinkmann [15] (see also [74]).

Theorem 1.7. Let (M, g) be an Einstein manifold of dim(M) = n ≥ 3. A conformal

metric g = ϕ−2g is Einstein if and only if Hesϕ =
∆ϕ

n
g.

It follows from the work of Brinkmann that a Riemannian four-dimensional Ein-
stein metric admits a conformally related Einstein deformation if and only if it is of
constant sectional curvature. On the other hand, the indefinite setting allows the ex-
istence of conformally-related Einstein metrics which are of non-constant sectional
curvature. Examples of this situation will appear in Chapter 3.

11
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1.4.2 Conformally Einstein manifolds

Einstein metrics are among the most privileged ones, since they are considered op-
timal metrics, i.e., those whose curvature has the property of being most evenly dis-
tributed on the manifold. For that reason, Einstein metrics are central in geometry.
One strategy to construct an Einstein metric consists in deforming an initial metric
by a conformal factor so that the resulting metric becomes Einstein. We make this
more precise as follows.

Definition 1.8. A pseudo-Riemannian manifold (M, g) is called locally conformally
Einstein if for any point p ∈ M there exists a neighborhood U of p ∈ M and a
smooth function ϕ : U → R so that g = ϕ−2g is a locally defined Einstein metric.

An application of Lemma 1.6–(iii) gives the following:

Theorem 1.9. [14] A pseudo-Riemannian manifold (M, g) is conformally Einstein
if and only if the following equation has a positive solution

(n− 2) Hesϕ +ϕρ =
1

n
((n− 2)∆ϕ+ ϕτ)g, (1.6)

where n = dim(M).

Equation (1.6) will be called the conformally Einstein equation. Observe that the
conformally Einstein equation is generically overdetermined. Moreover solutions (if
exist) are unique as shown by Brinkmann and Yau in the Riemannian setting.

Theorem 1.10. [15, 106] Let M and N be two connected Riemannian Einstein
manifolds of dimension ≥ 3 and let F : M → N be a conformal diffeomorphism.
Then either F is a homothety or both M and N have constant curvature.

It is relevant to emphasize that uniqueness of Einstein metrics in the conformal
class is not true in higher signatures. In Chapter 3 we will show the existence of
non-reductive homogeneous conformally Einstein pseudo-Riemannian manifolds (of
neutral or Lorentzian signature) where the space of conformally Einstein metrics has
dimension 2 or 3.

Equation (1.6) is trivial in dimension two, but its integration is surprisingly dif-
ficult in higher dimensions. Three-dimensional manifolds are locally conformally
Einstein if and only if they are locally conformally flat. Hence this dimension is ex-
ceptional and there is a tensorial characterization of the conformally Einstein prop-
erty. However, in dimension ≥ 4, there are examples which are conformally Einstein
but not locally conformally flat. The conformally Einstein equation implies that the
eigenspaces of the Hessian operator hϕ must coincide with the eigenspaces of the

12
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Ricci operator. Moreover, the eigenvalues of hϕ are determined by the eigenvalues
of Ric and conversely.

In what follows of this section, we will show some consequences of the con-
formally Einstein Equation (1.6) aimed to obtain a tensorial characterization of the
conformally Einstein property. The following is an important observation.

Lemma 1.11. Let (M, g) be a pseudo-Riemannian manifold. Then

(divW )(X,Y, Z) = (n− 3)
{

(∇XS)(Y,Z)− (∇YS)(X,Z)
}
,

where S = 1
n−2

(
ρ− τ

2(n−1)g
)

is the Schouten tensor. In particular divW = 0 if
(M, g) is Einstein.

Proof. Fix a point p ∈ M and specialize a local orthonormal frame {E1, . . . , En}
so that ∇EiEj |p= 0. Further let X , Y , Z be vector fields on M and assume that
∇EiX |p = ∇EiY |p = ∇EiZ |p = 0. Then the divergence of the Weyl tensor is
given by:

(divW )(X,Y, Z) =
∑
i

εi(∇EiW )(X,Y, Z,Ei) .

Recall that the expression of the Weyl tensor W = R−S� g is given by

W (X,Y, Z, T ) =
{
R+ τ

(n−1)(n−2)R
0 − 1

n−2(ρ� g)
}

(X,Y, Z, T ) . (1.7)

Now, we compute the covariant derivative of each term in Equation (1.7). First of all
we apply the second Bianchi identity to compute∑

i εiEiR(X,Y, Z,Ei) = −
∑

i εiXR(Y,Ei, Z,Ei)−
∑

i εiY R(Ei, X, Z,Ei)

= Y ρ(X,Z)−Xρ(Y,Z) .

Since the standard algebraic curvature tensor R0 is parallel, the derivative of the
second term in Equation (1.7) becomes

1
(n−1)(n−2)

∑
i εiEi

(
τR0(X,Y, Z,Ei)

)
= 1

(n−1)(n−2)R
0(X,Y, Z,Ei)εiEi(τ)

= 1
(n−1)(n−2)

{
g(X,Z)Y (τ)− g(Y, Z)X(τ)

}
.
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Proceeding in an analogous way with the derivative of the third term in Equation (1.7)
one has

1
n−2

∑
i εiEi(ρ� g)(X,Y, Z,Ei)

= 1
n−2

∑
i εi

{
g(Y,Ei)Eiρ(X,Z)− g(Y,Z)Eiρ(X,Ei)

+ g(X,Z)Eiρ(Y,Ei)− g(X,Ei)Eiρ(Y,Z)
}

= 1
n−2{Y ρ(X,Z)− g(Y,Z) div ρ(X) + g(X,Z) div ρ(Y )−Xρ(Y,Z)}

= 1
2(n−2)

{
2Y ρ(X,Z)− g(Y,Z)X(τ) + g(X,Z)Y (τ)− 2Xρ(Y,Z)

}
.

Now, adding all the expressions above one gets:

(divW )(X,Y, Z)

= Y ρ(X,Z)−Xρ(Y,Z) + 1
(n−2)(n−1)

{
g(X,Z)Y (τ)− g(Y,Z)X(τ)

}
− 1

2(n−2)

{
2Y ρ(X,Z)− g(Y, Z)X(τ) + g(X,Z)Y (τ)− 2Xρ(Y,Z)

}
= n−3

n−2

{
Y ρ(X,Z)−Xρ(Y,Z)− 1

2(n−1) (g(X,Z)Y (τ)− g(Y, Z)X(τ))
}

= (n− 3)
{

(∇XS)(Y,Z)− (∇YS)(X,Z)
}
.

Finally observe that if (M, g) is Einstein, then ρ = τ
ng with τ ∈ R, and thus the

Schouten tensor S =
1

n− 2

(
ρ− τ

2(n− 1)
g

)
is parallel. Hence divW = 0.

Let g and g be conformally related so that g = ϕ−2g and, for sake of simplicity,
set σ = −logϕ. Let W and div4W denote the Weyl tensor and its divergence with
respect to the metric g. Then one has:

Lemma 1.12. Let g = e2σg be two conformally related metrics. Then

(div4W )(X,Y, Z) = (div4W )(X,Y, Z) + (n− 3)W (X,Y, Z,∇σ) (1.8)

for all vector fields X,Y, Z on M .

Proof. Let {E1, E2, . . . , En} be a local g-orthonormal frame and set Ei = 1
eσEi

so that {E1, E2, . . . , En} is a local ḡ-orthonormal frame, where g(Ei, Ej) = εiδij .
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Then

(div4W )(X,Y, Z)

=
∑
i

εi(∇Ei
W )(X,Y, Z,Ei)

=
∑
i

εi
1

e2σ

{
∇Ei

W (X,Y, Z,Ei)−W (∇Ei
X,Y, Z,Ei)−W (X,∇Ei

Y,Z,Ei)

−W (X,Y,∇EiZ,Ei)−W (X,Y, Z,∇EiEi)
}
.

Next, we expand separately each one of the five terms above to obtain:

∇Ei
W (X,Y, Z,Ei) = Ei(e

2σW (X,Y, Z,Ei))

= 2e2σEi(σ)W (X,Y, Z,Ei) + e2σ∇Ei
W (X,Y, Z,Ei),

W (∇Ei
X,Y, Z,Ei)

= e2σW (∇EiX + Ei(σ)X +X(σ)Ei − g(Ei, X)∇σ, Y, Z,Ei)

= e2σ
{
W (∇Ei

X,Y, Z,Ei) +W (Ei(σ)X,Y, Z,Ei) +W (X(σ)Ei, Y, Z,Ei)

− g(Ei, X)W (∇σ, Y, Z,Ei)
}

= e2σ
{
W (∇Ei

X,Y, Z,Ei) +W (X,Y, Z, g(∇σ,Ei)Ei)

+X(σ)W (Ei, Y, Z,Ei)−W (∇σ, Y, Z, g(Ei, X)Ei)
}
,

W (X,∇Ei
Y,Z,Ei)

= e2σW (X,∇Ei
Y + Ei(σ)Y + Y (σ)Ei − g(Ei, Y )∇σ, Z,Ei)

= e2σ
{
W (X,∇Ei

Y,Z,Ei) +W (X,Ei(σ)Y, Z,Ei) +W (X,Y (σ)Ei, Z,Ei)

− g(Ei, Y )W (X,∇σ, Z,Ei)
}

= e2σ
{
W (X,∇Ei

Y,Z,Ei) +W (X,Y, Z, g(∇σ,Ei)Ei)

+ Y (σ)W (X,Ei, Z,Ei)−W (X,∇σ, Z, g(Ei, Y )Ei)
}
,
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W (X,Y,∇Ei
Z,Ei)

= e2σW (X,Y,∇EiZ + Ei(σ)Z + Z(σ)Ei − g(Ei, Z)∇σ,Ei)

= e2σ
{
W (X,Y,∇Ei

Z,Ei) +W (X,Y,Ei(σ)Z,Ei) +W (X,Y, Z(σ)Ei, Ei)

− g(Ei, Z)W (X,Y,∇σ,Ei)
}

= e2σ
{
W (X,Y,∇Ei

Z,Ei) +W (X,Y, Z, 〈∇σ,Ei〉Ei)

+ Z(σ)W (X,Y,Ei, Ei)−W (X,Y,∇σ, g(Ei, Z)Ei)
}
,

W (X,Y, Z,∇Ei
Ei)

= e2σW (X,Y, Z,∇Ei
Ei + Ei(σ)Ei + Ei(σ)Ei − g(Ei, Ei)∇σ)

= e2σ
{
W (X,Y, Z,∇Ei

Ei) + 2W (X,Y, Z,Ei(σ)Ei)

− g(Ei, Ei)W (X,Y, Z,∇σ)
}
.

Hence,

(div4W )(X,Y, Z)

=
∑
i

εie
2σ
{
∇EiW (X,Y, Z,Ei)−W (∇EiX,Y, Z,Ei)−W (X,∇EiY,Z,Ei)

−W (X,Y,∇Ei
Z,Ei)−W (X,Y, Z,∇Ei

Ei)
}

+ (n− 3)W (X,Y, Z,∇σ)

+W (∇σ, Y, Z,X) +W (X,∇σ, Z, Y ) +W (X,Y,∇σ, Z)

= (div4 W )(X,Y, Z) + (n− 3)W (X,Y, Z,∇σ),

which finishes the proof.

An immediate consequence of Lemma 1.11 and Lemma 1.12 is that, if g = ϕ−2g
is Einstein, then

(div4W )(X,Y, Z)− (n− 3)W (X,Y, Z,∇σ) = 0 (1.9)

for all vector fieldsX,Y, Z onM where ϕ = e−σ [74,79]. Observe that the tensorial
condition involves ∇σ, which makes (1.9) in a certain way unmanageable since the
conformal deformation σ is unknown.

Remark 1.13. The identity in Equation (1.9) is satisfied for any divergence, i.e.,
(div3W )(X,Y, Z)− (n− 3)W (X,Y,∇σ,X) = 0.
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Next we compute the divergence in Equation (1.9). As a matter of notation,
let W [Φ] denote the action of the Weyl conformal curvature tensor on the space of
symmetric (0, 2)-tensor fields by (see [10])

W [Φ](X,Y ) =
∑
i,j

εiεjW (Ei, X, Y,Ej)Φ(Ej , Ei) .

Lemma 1.1 shows that, for any function f ∈ C∞(M), one has W [f g] = 0 since W
is trace free and W [g] = ρW = 0.

Now, fix a point p ∈ M and let {E1, E2, . . . , En} be a local g-orthonormal
frame around p ∈ M such that ∇EiEj |p = 0 for any i, j and let X , Y , and Z
be vector fields such that∇EiX|p = ∇EiY |p = ∇EiZ|p = 0 for all i. We set
T (X,Y, Z) = W (X,Y, Z,∇σ) and compute div2 T in Equation (1.9) to get:

0 = div2 div4W (X,Y ) + (n− 3) div2 T (X,Y ) . (1.10)

Furthermore

div2 T (X,Y )

=
∑
i(∇Ei

T )(X,Ei, Y ) =
∑
i

∇Ei
W (X,Ei, Y,∇σ)

=
∑
i,j

∇Ei (〈∇σ,Ej〉W (X,Ei, Y, Ej)) =
∑
i,j

{
〈∇Ei∇σ,Ej〉W (X,Ei, Y, Ej)

}
=
∑
i,j

Hesσ(Ei, Ej)W (X,Ei, Y, Ej) +
∑
j

〈∇σ, Ej〉
∑
i

∇Ei
W (X,Ei, Y, Ej)

= W [Hesσ] +
∑
j

〈∇σ,Ej〉div2W (X,Y,Ej) .

Now, by Remark 1.13 one gets

div2 T (X,Y )

= W [Hesσ]− (n− 3)
∑
j

〈∇σ,Ej〉W (X,∇σ, Y,Ej)

= W [Hesσ]− (n− 3)
∑
i,j

〈∇σ,Ei〉〈∇σ,Ej〉W (X,Ei, Y, Ej)

= W [Hesσ]− (n− 3)W [dσ ⊗ dσ],

and thus

div2 div4W (X,Y ) + (n− 3)W [Hesσ]− (n− 3)2W [dσ ⊗ dσ] = 0 . (1.11)
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Since ϕ = e−σ, one has dϕ = −e−σdσ and Hesϕ = e−σ (−Hesσ +dσ ⊗ dσ).
Hence (n − 2) Hesϕ +ϕρ = (n − 2)e−σ (−Hesσ +dσ ⊗ dσ) + e−σρ, and the con-
formally Einstein Equation (1.6) becomes

Hesσ =
1

n− 2
ρ+ dσ ⊗ dσ − eσ · ξ · g,

where ξ = 1
n(n−2){(n − 2)∆ϕ + ϕτ}. Finally, substituting in Equation (1.11) and

using Lemma 1.1, one gets

0 = div2 div4W (X,Y )+(n− 3)W
[

1
n−2ρ+dσ ⊗ dσ−eσ ξ g

]
− (n− 3)2W [dσ ⊗ dσ]

= div2 div4W + n−3
n−2W [ρ] + (n− 3)

{
W [dσ ⊗ dσ]− (n− 3)W [dσ ⊗ dσ]

}
= div2 div4W + n−3

n−2W [ρ]− (n− 3)(n− 4)W [dσ ⊗ dσ] .

In the special case of dim(M) = 4, one obtains the necessary conditions (i) and
(ii) in Theorem 1.14 to be conformally Einstein. Moreover, these conditions are also
sufficient in some special cases as the following shows.

Theorem 1.14. [72] Let (M, g) be a four-dimensional manifold such that the con-
formal metric ḡ = ϕ−2g is Einstein. Then

(i) div2 div4W + 1
2W [ρ] = 0,

(ii) (div4W )(X,Y, Z)−W (X,Y, Z,∇σ) = 0,

where σ = − logϕ, for some function ϕ ∈ C∞(M).
Conversely, conditions (i) and (ii) above are also sufficient if (M, g) is assumed

to be weakly-generic, i.e., the Weyl curvature operator (viewed as a mapW : TM →⊗3 TM ) is injective.

Observe that condition (i) in Theorem 1.14 is a tensorial equation on (M, g)
which is independent of the conformal factor.

1.5 Additional structures on manifolds

In this section we briefly review some basic notation on Kähler and para-Kähler struc-
tures that will appear in subsequent chapters.

18



1.5 Additional structures on manifolds

Kähler structures

A complex manifold is a differentiable manifold with a holomorphic atlas. If a real
manifold M of dimension n = 2m admits a globally defined tensor field J of type
(1, 1) such that

J2 = − Id, (1.12)

then (M,J) is called an almost complex manifold and J is an almost complex struc-
ture on M . As the word indicates, almost complex means that it is “not quite”
complex. If the almost complex structure corresponds to the underlying structure
of a complex manifold, then it is said to be integrable and a fundamental result of
Newlander and Nirenberg [85] shows that an almost complex structure J on M is
integrable if and only if the Nijenhuis tensor NJ vanishes, where

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ] .

A pseudo-Riemannian metric g on M is called an almost Hermitian metric if the
almost complex structure J is an isometry in each tangent space, i.e.,

g(JX, JY ) = g(X,Y ) for all X,Y ∈ X(M) . (1.13)

The triple (M, g, J) is called almost Hermitian manifold. An almost Hermitian man-
ifold (M, g, J) is said to be Hermitian if the almost complex structure is integrable.

Associated to any almost Hermitian structure (g, J) there exists a non-degenerate
2-form, called the Kähler form and given by:

Ω(X,Y ) = g(JX, Y ) .

The covariant derivative of the almost complex structure, the Nijenhuis tensor and
the differential of the Kähler 2-form Ω are related by (see [105]).

2g((∇XJ)Y, Z) + 3dΩ(X,Y, Z)− 3dΩ(X, JY, JZ)− g(JX,NJ(Y,Z)) = 0 .

A symplectic manifold (M,Ω) is a manifold equipped with a closed and non-

degenerate two form (i.e., dΩ = 0 and Ωm = Ω
m

∧ · · · ∧ Ω 6= 0). If (M, g, J) is
an almost Hermitian manifold with closed Kähler form, then M is said to be almost
Kähler. IfM is a complex manifold with an Hermitian metric and Ω is closed thenM
is called a Kähler manifold with Kähler metric g. In other words, Kähler manifolds
are characterized by the parallelizability of their complex structure, ∇J = 0, and
their curvature tensor satisfies

R(X,Y, Z,W ) = R(JX, JY, Z,W ) .
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A consequence of the previous identity is that any Kähler manifold of constant sec-
tional curvature is necessarily flat. We define the holomorphic sectional curvature
as the restriction of the sectional curvature to non-degenerate holomorphic planes π
(i.e., non-degenerate planes invariant by the complex structure; J(π) ⊂ π) and it is
given by

H(π) =
R(X, JX,X, JX)

g(X,X)2
.

It is important to emphasize that the holomorphic sectional curvature determines
the curvature tensor in the Kähler case. Moreover, a Kähler manifold has constant
holomorphic sectional curvature c if and only if the curvature tensor is given by

R =
c

4
(R0 +RJ),

where R0 is the standard algebraic curvature tensor and

RJ(X,Y )Z = g(JX,Z)JY − g(JY, Z)JX + 2g(JX, Y )JZ .

A Kähler manifold of constant holomorphic sectional curvature is locally isometric
to the complex space Cmν (if c = 0), to the complex projective space CPmν (if c > 0)
or to the complex hyperbolic space CHm

ν (if c < 0) [8].
An almost Hermitian manifold (M, g, J) is said to be locally conformally Kähler

(resp. locally conformally symplectic) if there is a local conformal deformation ḡ =
e2σg so that (M, ḡ, J) becomes Kähler (resp. symplectic). One has the following
characterizations (see [52, 101] and references therein).

• (M, g, J) is locally conformally Kähler if and only if J is integrable and dΩ =
θ ∧ Ω, dθ = 0, where θ is a closed 1-form.

• (M, g, J) is locally conformally symplectic if and only if dΩ = θ∧Ω, dθ = 0,
where θ is a closed 1-form.

Let (M, g, J) be a four-dimensional Kähler manifold and orient it so that the
Kähler 2-form is self-dual (Ω ∈ Λ2

+). Then the self-dual Weyl curvature operator
satisfies

W+ =
τ

12
diag[2,−1,−1] .

Hence the self-dual part of the Weyl tensor of any locally conformally Kähler metric
has two-equal eigenvalues. The following converse, proven by Derdziński, is impor-
tant for our purposes in Chapter 2.

Theorem 1.15. [48] Let (M, g) be an oriented four-dimensional Riemannian Ein-
stein manifold such that W+ has at most two different eigenvalues at each point.
Then g = (24‖W+‖2)

1
3 g is Kähler on the open set where W+ 6= 0.
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1.5 Additional structures on manifolds

Para-Kähler structures

A (1,1)-tensor field J on a 2m-dimensional manifold M is said to be an almost pro-
duct structure if J2 = Id. In this case the pair (M, J) is called an almost product
manifold. An almost para-complex manifold is an almost product manifold such that
the bundles T+M and T−M associated with the two eigenvalues ±1 of J have the
same rank.

An almost para-Hermitian manifold (M, g, J) is a manifold M endowed with
an almost para-complex structure J and a metric tensor g such that g(JX, JY ) =
−g(X,Y ). We define the non-degenerate 2-form of the almost para-Hermitian man-
ifold by

Ω(X,Y ) = g(JX,Y ),

for any vector fields X,Y on M .
Let Ω be a 2-form on M . Ω is called an almost symplectic form if it is non-

degenerate, i.e., Ωm 6= 0 and the pair (M,Ω) is said to be an almost symplectic
manifold. Let L ⊂ M be an m-dimensional submanifold of an almost symplectic
manifold. If Ω|L = 0 then L is a Lagrangian submanifold. An almost symplectic
manifold is an almost para-Hermitian manifold if its tangent bundle decomposes as
a Whitney sum of Lagrangian subbundles. Observe that TM = L1 ⊕ L2 and the
(1, 1)-tensor field defined by J = πL1 − πL2 (where πL1 and πL2 are the projections
of TM on L1 and L2, respectively) determines an almost para-complex structure on
M . Furthermore the metric tensor is determined by the para-complex structure and
the 2-form Ω as g(X,Y ) = Ω(JX,Y ).

A para-Kähler manifold is a symplectic manifold which is diffeomorphic to a
product of Lagrangian submanifolds. One has the following relationship between Ω,
the integrability of J and the covariant derivative of J:

2g((∇XJ)Y,Z) + 3dΩ(X,Y, Z) + 3dΩ(X, JY, JZ) + g(JX,NJ(Y, Z)) = 0,

where NJ(X,Y ) = [JX, JY ] − J[JX,Y ] − J[X, JY ] + J2[X,Y ] is the Nijenhuis
tensor of the almost para-complex structure. This relationship allows to characterize
para-Kähler manifolds through the parallelism of J. Hence one has that (M, g, J) is
a para-Kähler manifold if and only if

J2 = Id, g(JX, JY ) = −g(X,Y ) and ∇J = 0 .

We refer to [44,46] for more details and references. In this case, the curvature tensor
satisfies

R(X,Y, Z,W ) = −R(JX, JY,Z,W ) .

We define the para-holomorphic sectional curvature by the restriction of the
sectional curvature to non-degenerate para-holomorphic planes, i.e., non-degenerate
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planes π such that J(π) ⊂ π:

H(π) = −R(X, JX,X, JX)

g(X,X)2
.

As in the Kähler case, the para-holomorphic sectional curvature determines the cur-
vature of a para-Kähler manifold and it is constant if and only if

R = − c
4

(R0 +RJ),

where R0 is the standard algebraic curvature tensor and

RJ(X,Y )Z = g(JX,Z)JY − g(JY,Z)JX + 2g(JX,Y )JZ .

A para-Kähler manifold of constant para-holomorphic sectional curvature is locally
isometric (or anti-isometric) to R2m if c = 0 or to the para-complex projective space
Pm(B) if c 6= 0 [58]. Further, observe that the para-complex projective space is
locally isometric to the cotangent bundle of a flat affine manifold equipped with a
suitable Riemannian extension [29].

1.6 The Bach tensor

The Bach tensor arises as the gradient of the quadratic curvature functional given by
the L2-norm of the Weyl curvature tensor. The purpose of this section is to intro-
duce the Bach tensor in dimension four and give some examples of Bach-flat metrics
(we refer to [6] for more details). We have already encountered the Bach tensor in
Theorem 1.14–(i).

Definition 1.16. Let (M, g) be a four-dimensional pseudo-Riemannian manifold.
The Bach tensor is the symmetric (0, 2)-tensor field defined by

B = div2 div4W +
1

2
W [ρ] .

The Bach tensor in dimension four is symmetric, trace free, divergence free and
conformally invariant [95,96]. Clearly locally conformally flat metrics are Bach-flat.
Moreover, a straightforward calculation shows that the Bach tensor of any Einstein
metric vanishes identically and Theorem 1.14–(i) shows that conformally Einstein
metrics are Bach-flat as well.

It is important to emphasize that Bach flatness is a necessary but not sufficient
condition for a manifold to be conformally Einstein. For instance the left-invariant
Bach-flat metrics constructed by Abbena, Garbiero and Salamon in [1] fail to satisfy
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1.6 The Bach tensor

Equation (1.9) and thus they are not locally conformally Einstein. However, Bach
flatness is also a sufficient condition to conformally Einstein in some special cases as
shown by Derdziński [48] (see also [77]).

Theorem 1.17. Let (M, g, J) be a four-dimensional positive definite Kähler mani-
fold. Then it is conformally Einstein if and only the Bach tensor vanishes.

An additional motivation for studying the Bach tensor with a different geomet-
rical flavor is as follows. Let W be the quadratic curvature functional given by the
L2-norm of the conformal Weyl tensor

W : g 7→ W(g) =

∫
M
‖Wg‖2 dvolg . (1.14)

It quantifies the deflection of a Riemannian metric g from being locally conformally
flat. A remarkable property is that W is conformally invariant in dimension four.
Indeed, if g = e2σg and n = 4, then

‖W‖2 dvolg = W ijk`W
ijk`

dvolg

= e2σWijk`e
2σe−8σW ijk`e4σ dvolg = ‖W‖2 dvolg .

The Euler-Lagrange equations forW-critical metrics were obtained by Bach [6], who
showed that a metric isW-critical if and only if B = 0.

Remark 1.18. In addition to conformally Einstein manifolds, half conformally flat
metrics are also Bach-flat. Let M be an oriented four-dimensional manifold. Recall
from the Hirzebruch signature formula that (see [48] and [5])

τ [M ] =
1

12π2

∫
M

(‖W+‖2 − ‖W−‖2)dV, (1.15)

where τ [M ] denotes the Hirzebruch signature of M . Hence

W(g) =

∫
M
‖W‖2 dvolg =

∫
M

(
‖W+‖2 + ‖W−‖2

)
dvolg

= ±12π2τ [M ] + 2

∫
M
‖W∓‖2 dvolg,

which shows that half conformally flat metrics are extremal for the functionalW , and
thus Bach-flat.
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1.7 Affine geometry

An affine manifold is a pair (M,D) of a manifold M and an affine torsion free
connection D. The Ricci tensor ρD is defined by setting ρD(X,Y ) := tr(Z →
RD(X,Z)Y ). Since the Ricci tensor need not be symmetric in general, we introduce
the symmetrization ρDs and the skew-symmetrization ρDsk by setting:

ρDs (X,Y ) := 1
2{ρ

D(X,Y ) + ρD(Y,X)},

ρDsk(X,Y ) := 1
2{ρ

D(X,Y )− ρD(Y,X)} .
(1.16)

An affine manifold (M,D) is flat if the associated curvature tensor RD vanishes.
In this case, there exists local coordinates where the Christoffel symbols are zero.
Two connectionsD andD are said to be projectively equivalent if there is a 1-form ω
such that DXY = DXY + ω(X)Y + ω(Y )X for all vector fields X,Y on M . One
says that (M,D) is projectively flat if the connection D is projectively equivalent
to a flat affine connection. Two-dimensional projectively flat affine structures are
characterized as follows

Theorem 1.19. [87] Let (M,D) be an affine surface. Then (M,D) is projectively
flat if and only if ρD, DρD are totally symmetric.

An affine manifold is curvature recurrent (resp. Ricci recurrent) if DRD =
ω ⊗ RD (resp. DρD = ω ⊗ ρD) for some 1-form ω, and (M,D) is said to be
locally symmetric if DRD = 0. Since the curvature tensor of any affine surface is
determined by the Ricci tensor as RD(X,Y )Z = ρD(X,Z)Y − ρD(Y,Z)X , one
has that curvature recurrent and Ricci recurrent conditions are equivalent in the two-
dimensional case.

Curvature recurrent surfaces appear in a natural way in the study of affine connec-
tions with skew-symmetric Ricci tensor since any affine surface with skew-symmetric
Ricci tensor is curvature recurrent around any point where the curvature is non-zero.
We refer to Wong [104] for a classification of curvature recurrent surfaces. The fol-
lowing results will be used in this memory:

(i) Let (Σ, D) be a curvature recurrent affine surface with symmetric Ricci tensor
of rank one. Then there exist local coordinates (x1, x2) where the unique non-
zero component of D is given by

D∂x1
∂x1 = a(x1, x2)∂x2

for some smooth function a(x1, x2) [104].
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(ii) Let (Σ, D) be a curvature recurrent affine surface with non-degenerate sym-
metric Ricci tensor. Then, there is a pseudo-Riemannian metric g on M such
that D is the Levi-Civita connection of g [104].

(iii) Let (Σ, D) be a curvature recurrent affine surface with skew-symmetric Ricci
tensor. Then there exist local coordinates (x1, x2) where the unique non-zero
components of D are given by

D∂x1
∂x1 = −∂x1θ(x1, x2)∂x1 , D∂x2

∂x2 = ∂x2θ(x
1, x2)∂x2 ,

for some smooth function θ(x1, x2) [49, 104].

1.7.1 Riemannian extensions

The existence of a parallel distribution on a Riemannian manifold (M, g), i.e., a
distribution V such that ∇V ⊂ V, leads to a local de Rham decomposition. This
local decomposition extends to the pseudo-Riemannian setting whenever the parallel
distribution V is non-degenerate. We say that a pseudo-Riemannian manifold is a
Walker manifold if it admits a parallel and degenerate distribution V. Walker showed
in [102] the existence of local coordinates where the metric takes a simple form as
follows (see [19] for more information on Walker manifolds).

Theorem 1.20. [102] Let M be an n-dimensional Walker manifold and let V be
an r-dimensional parallel and degenerate distribution. Then, there exist adapted
coordinates on M , (x1, . . . , xn−r, xn−r+1, . . . , xn), such that the metric is given by

(gij) =

 B H Idr

Ht A 0

Idr 0 0

 ,

where Idr is the identity matrix of order r and A, B, H are matrices whose coeffi-
cients are functions of the coordinates verifying:

(i) A and B are symmetric matrices of order (n − 2r) × (n − 2r) and r × r,
respectively. H is a matrix of order r × (n − 2r) matrix and Ht denotes its
transposed.

(ii) A and H do not depend on the coordinates (xn−r+1, . . . , xn).

Moreover, the null parallel distribution V is locally generated by the coordinate vec-
tor fields {∂xn−r+1 , . . . , ∂xn}.
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The canonical form in the previous theorem simplifies if the parallel distribution
has full dimension and the manifold has even dimension n = 2m. In this case, there
exist Walker coordinates (x1, . . . , xm, x1′ , . . . , xm′) such that the metric is given by
the matrix (see [19]):

(gij) =

(
B Idm

Idm 0

)
, (1.17)

whereB is anm×m symmetric matrix whose entries are functions of the coordinates
(x1, . . . , xm, x1′ , . . . , xm′). When the metric is in the form (1.17) the Christoffel
symbols and the curvature operator are given as follows:

Lemma 1.21. [29] Let (M, g,V) be a Walker manifold of dimension n = 2m, where
dim(V) = m. Then, the non-zero Christoffel symbols are given by

Γij
k = −1

2∂xk′gij , Γi′j
k′ = 1

2∂xi′gjk,

Γij
k′ = −1

2(∂xkgij + ∂xjgik + ∂xigjk +
∑

s gks∂xs′gij),

where the sum is taken for all s = 1, . . . ,m.

For any Walker manifold the curvature tensor satisfies the following conditions
(see [50]):

R(V,V⊥, ·, ·) = 0, R(V,V, ·, ·) = 0, R(V⊥,V⊥,V, ·) = 0 .

Moreover, the non-zero components of the curvature tensor are as follows.

Lemma 1.22. [29] Let (M, g,V) be a Walker manifold of dimension n = 2m, where
dim(V) = m. Then, the non-zero components of the curvature tensor of type (1,3)
are given by (up to symmetries):

Rhjik = −1
2(∂xi∂xh′gjk − ∂xj∂xh′gik)−

1
4(∂xs′gik∂xh′gjs − ∂xs′gjk∂xh′gis),

Rh
′
jik = −1

2(∂xj∂xkgih − ∂xj∂xhgik + ∂xi∂xhgjk − ∂xi∂xkgjh)

− 1
4

{
∂xs′gik(∂xhgjs − ∂xsgjh − ∂xjgsh − ght∂xt′gjs)

− ∂xs′gjk(∂xhgis − ∂xsgih − ∂xigsh − ght∂xt′gis)

− ∂xs′gjh(∂xsgik − ∂xkgis − ∂xigks − gst∂xt′gik)

+ ∂xs′gih(∂xsgjk − ∂xkgjs − ∂xjgks − gst∂xt′gjk)

+ 2∂xj (ghs∂xs′gik)− 2∂xi(ghs∂xs′gjk)
}
,
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1.7 Affine geometry

Rhji′k = −1
2∂xi′∂xh′gjk,

Rh
′
jik = −1

2(∂xh∂xi′gjk − ∂k∂xi′gjh)

− 1
4(∂xs′gjk∂xi′gsh + ∂xs′gjh∂xi′gsk − 2∂xi′ (ghs∂xs′gjk)),

Rh
′
jik′ = −1

2(∂xj∂xk′gih − ∂xi∂xk′gjh)− 1
4(∂xk′gis∂xs′gjh − ∂xk′gjs∂xs′gih),

Rh
′
ji′k′ = 1

2∂xi′∂xk′gjh,

where 1 ≤ s ≤ m.

The study of the geometry in dimension four is central in this thesis. In this case,
we take coordinates (x1, x2, x1′ , x2′) such that the metric (1.17) takes the form:

g =


a c 1 0
c b 0 1
1 0 0 0
0 1 0 0

 ,

where a, b and c are functions in the coordinates (x1, x2, x1′ , x2′).
A special class of Walker metrics is given by the Riemannian extensions and

their modifications. A feature of these metrics is that they provide a link between
affine and pseudo-Riemannian geometry. Hence one may use pseudo-Riemannian
techniques to investigate affine problems and vice versa.

The Riemannian extensions are a family of distinguished metrics on the cotangent
bundle of an affine manifold. Let T ∗M be the cotangent bundle of anm-dimensional
manifold M and let π : T ∗M → M be the projection. Let p̃ = (p, ω) denote a point
of T ∗M , where p ∈ M and ω ∈ T ∗pM . Local coordinates (x1, . . . , xm) in an open
set U of M induce local coordinates (x1, . . . , xm, xi′ , . . . , xm′) in π−1(U), where
one sets for any 1-form

ω =
∑

xi′dx
i .

For each vector field X on M , the evaluation of X is the real valued function
ιX : T ∗M → R given by ιX(p, ω) = ω(Xp). Setting X = Xi∂xi one has

ιX(xi, xi′) =
∑

xi′X
i .

Vector fields on T ∗M are characterized by their action on evaluations ιX and one
defines the complete lift to T ∗M of a vector field X on M by Xc(ιZ) = ι[X,Z] for
all vector fields Z ∈ X(M). Moreover, (0, s)-tensor fields on T ∗M are characterized
by their action on complete lifts of vector fields on M . Hence, for any (1, 1)-tensor
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field T on M , its evaluation is the 1-form ιT on T ∗M characterized by ιT (Xc) =
ι(TX). In induced local coordinates one has the expression ιT = xk′T

k
i dx

i.
Considering a torsion free connectionD onM , the cotangent bundle T ∗M can be

equipped with a pseudo-Riemannian metric gD of signature (m,m), which is called
the Riemannian extension of D [92], characterized by

gD(Xc, Y c) = −ι(DXY +DYX),

where Xc, Y c denote the complete lifts to T ∗M of vector fields X,Y on M . In
induced local coordinates (x1, . . . , xm, xi′ , . . . , xm′) on T ∗M , the Riemannian ex-
tension has the expression

gD = 2 dxi ◦ dxi′ − 2xk′
DΓij

kdxi ◦ dxj , (1.18)

where DΓij
k are the Christoffel symbols of D with respect to (x1, . . . , xm) on M

and “◦” denotes the symmetric product ω1 ◦ ω2 := 1
2(ω1 ⊗ ω2 + ω2 ⊗ ω1). In matrix

form:

gD =

(
−2xk′

DΓij
k Idm

Idm 0

)
.

Riemannian extensions are a particular class of Walker metrics with parallel degen-
erate distribution V = ker(π∗) = span{∂x1′ , . . . , ∂xm′}.

Modified Riemannian extensions

A generalization of Riemannian extensions can be constructed as follows. Consider
(M,D) an n-dimensional affine manifold where D is a torsion free connection on
M . Let Φ be a symmetric (0, 2)-tensor field on M . Then the deformed Riemannian
extension, gD,Φ = gD + π∗Φ, is a first perturbation of the Riemannian extension and
is characterized by

gD,Φ(Xc, Y c) = −ι(DXY +DYX) + Φ(X,Y ) ◦ π,

where Xc and Y c denote the complete lifts to T ∗M of vector fields X,Y on M . In
local coordinates one has

gD,Φ = 2 dxi ◦ dxi′ − {2xk′DΓij
k − Φij}dxi ◦ dxj .

A second perturbation is as follows. Let T = T ki dx
i ⊗ ∂xk and S = Ski dx

i ⊗
∂xk be (1, 1)-tensor fields onM . The evaluations ιT and ιS define 1-forms on T ∗M .
The modified Riemannian extension, gD,Φ,T,S is the neutral signature metric on T ∗M
defined by (see [29])

gD,Φ,T,S = ιT ◦ ιS + gD + π∗Φ, (1.19)

28



1.7 Affine geometry

where Φ is a symmetric (0, 2)-tensor field on M . In local coordinates one has

gD,Φ,T,S = 2 dxi ◦ dxi′

+{1
2xr′xs′(T

r
iS
s
j + T rjS

s
i)− 2xk′

DΓij
k + Φij}dxi ◦ dxj .

Modified Riemannian extensions are characterized among Walker metrics by their
curvature as follows (see [2]):

(i) A Walker manifold satisfiesR(V, ·)V = 0 if and only if it is locally a deformed
Riemannian extension.

(ii) A Walker manifold satisfies (∇VR)(V, ·)V = 0 if and only if it is locally a
modified Riemannian extension. Hence, locally symmetric Walker metrics are
modified Riemannian extensions.

The case when T is a multiple of the identity (T = c Id, c 6= 0) and S = Id
is of special interest. It was shown in [29] that for any affine manifold (M,D), the
modified Riemannian extension gD,Φ,c Id,Id is an Einstein metric on T ∗M if and only
if the deformation tensor Φ is the symmetric part of the Ricci tensor of (M,D).

Theorem 1.23. The modified Riemannian extension gD,Φ,c Id,Id on the cotangent
bundle T ∗M of an m-dimensional affine manifold (M,D) is Einstein if and only
if Φ = 4

c(m−1)ρ
D
s , with c 6= 0.

Proof. Let gD,Φ,c Id,Id = cι Id ◦ι Id +gD +π∗Φ be a modified Riemannian extension
and let τ be its scalar curvature. The trace free Ricci tensor is given by ρ0 = ρ −
τ

2mgD,Φ,c,Id and determined by

ρ0 = 2π∗ρDs −
1

2
c(m− 1)π∗Φ,

from where the result follows.

A slight generalization of the modified Riemannian extension allowed a complete
description of self-dual Walker metrics as follows.

Theorem 1.24. [29, 51] A four-dimensional Walker metric is self-dual if and only if
it is locally isometric to the cotangent bundle T ∗Σ of an affine surface (Σ, D), with
metric tensor

g = ιX(ι Id ◦ι Id) + ι Id ◦ιT + gD + π∗Φ,

where X , T , D and Φ are a vector field, a (1, 1)-tensor field, a torsion free affine
connection and a symmetric (0, 2)-tensor field on Σ, respectively.
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1.8 The Ricci flow: Ricci solitons

The Ricci flow was introduced by Hamilton in [64] aimed to solve the Poincaré con-
jecture: any three-dimensional closed and simply connected manifold is homeomor-
phic to S3. The Ricci flow is defined by the evolution equation

∂

∂t
g(t) = −2ρg(t), (1.20)

where g(t) is a 1-parameter family of Riemannian metrics on M . For any C∞ metric
g0 on a closed manifold M , there is a unique solution g(t), t ∈ [0, ε), to the Ricci
flow equation for some ε > 0, with g(0) = g0. The idea of the Ricci flow is to
deform the original metric g(0) into a distinguished one by its Ricci curvature (see
for example [42]). For example, if M is two-dimensional, the Ricci flow deforms a
metric conformally to one of constant curvature and thus gives a proof of the two-
dimensional uniformization theorem [38].

The first example of solution to the Ricci flow equation is given by Einstein met-
rics, where the solution is

g(t) = (1− 2λt)g0, where


t ∈ (−∞, 1

2λ) if λ > 0,

t ∈ ( 1
2λ ,∞) if λ < 0,

t ∈ (−∞,∞) if λ = 0,

for an Einstein initial metric g(0) such that ρg(0) = λg(0). Moreover, in any of the
cases g(0) remains invariant modulo homotheties.

Generalizing the behaviour of Einstein metrics, and allowing the initial metric
to change not only by homotheties but also by diffeomorphisms, a solution g(t) of
the Ricci flow is said to be self-similar if there exists a positive function σ(t) and a
one-parameter group of diffeomorphisms ψ(t) : M →M such that

g(t) = σ(t)ψ(t)∗g(0) . (1.21)

Remark 1.25. If Equation (1.21) defines a solution of the Ricci flow, then differen-
tiating (1.21) yields

− 2 ρ(g(t)) = σ′(t)ψ(t)∗g0 + σ(t)ψ(t)∗(LXg0), (1.22)

where g0 = g(0), X is the time-dependent vector field such that X(ψ(t)(p)) =
d
dt(ψ(t)(p)) for any p ∈M , and σ′ = dσ

dt .
Since ρ(g(t)) = ψ(t)∗ρ(g0), one can drop the pull-backs in Equation (1.22) and

get:
− 2 ρ(g0) = σ′(t)g0 + LX̃(t)g0, (1.23)
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where X̃(t) = σ(t)X(t). Put λ = −1
2 σ̇(0) and X0 = 1

2 X̃(0), so that Equa-
tion (1.23) becomes

−2 ρ(g0) = −2λ g0 + 2LX0g0 at t = 0 .

This shows that for any self-similar solution of the Ricci flow there exists a vector
field on M satisfying

LXg + ρ = λ g .

Conversely, let X be a complete vector field on a pseudo-Riemannian manifold
(M, g) and denote by ψ(t) : M → M with ψ(0) = IdM the family of diffeomor-
phisms generated by X according to

∂

∂t
ψ(t)(p) =

1

1− 2λt
X(ψ(t)(p)),

which is defined for all t < 1
2λ if λ > 0 and for all t > 1

2λ if λ < 0. Considering now
the one-parameter family of metrics

g(t) = (1− 2λt)ψ(t)∗g,

one has
∂
∂t g(t) = −2λψ(t)∗g + (1− 2λ)ψ(t)∗

(
L 1

1−2λt
Xg
)

= ψ(t)∗
(
−2λ g + LX(ψ(t)(p))g

)
.

Now, if LXg + ρ = λg, then

∂

∂t
g(t) = ψ(t)∗(−2 ρ) = −2ψ(t)∗ρ = −2 ρ(ψ(t)∗g) = −2 ρ(g(t)),

which shows that g(t) is a solution of the Ricci flow.

The above motivates the following definition.

Definition 1.26. A triple (M, g,X) where (M, g) is a pseudo-Riemannian manifold
and X is a vector field on M satisfying

LXg + ρ = λ g (1.24)

is called a Ricci soliton. A Ricci soliton is said to be shrinking, steady or expanding
if λ > 0, λ = 0 or λ < 0, respectively.
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A Ricci soliton whose vector field can be written as the gradient of some function
f : M → R is called a gradient Ricci soliton. In this case, we may compute LXg0 =
2 Hesg0(f) and we have

Hesg0(f) + ρ(g0) = λg0 . (1.25)

We call the function f the potential function. If the potential function is constant,
then the gradient Ricci soliton is trivial since Equation (1.25) reduces to the Einstein
equation. In consequence, gradient Ricci solitons are natural extensions of Einstein
manifolds.

Gradient Ricci solitons codify geometric information of the manifold in terms of
the Ricci curvature and the second fundamental form of the level sets of the potential
function f . Moreover, they appear as singularities of the Ricci flow [41], so it is
important to understand the geometry and topology of gradient Ricci solitons and
their classification.

As a result of several works, the classification of complete locally conformally
flat gradient shrinking Ricci solitons has been finally achieved [83, 94]. Since the
Ricci tensor determines the curvature tensor in the locally conformally flat case, it
follows that a locally conformally flat gradient Ricci soliton, not necessarily com-
plete, is locally a warped product in the Riemannian case [55]. Four-dimensional half
conformally flat (i.e., self-dual or anti-self-dual) gradient Ricci solitons have been in-
vestigated in the Riemannian and neutral signature cases [16, 39]. While they are
locally conformally flat in the Riemannian situation, neutral signature allows other
examples given by Riemannian extensions of affine gradient Ricci solitons.

On the other hand, since Bach-flat metrics contain half conformally flat and con-
formally Einstein metrics as special cases, a natural problem is to classify Bach-flat
gradient Ricci solitons. The Riemannian case was investigated in the shrinking and
steady cases in [34,36]. In all situations the Bach-flat condition reduces to the locally
conformally flat one under some natural assumptions. In Chapter 4 we construct new
examples of Bach-flat gradient Ricci solitons in the neutral signature case where the
corresponding potential functions have degenerate level set hypersurfaces and their
underlying structure is never locally conformally flat, in sharp contrast with the Rie-
mannian situation. These metrics are realized as modified Riemannian extensions on
the cotangent bundle T ∗Σ of an affine surface (Σ, D).

Self-dual gradient Ricci solitons

Let (M, g, f) be a gradient Ricci soliton. The level set hypersurfaces of the potential
function play a distinguished role in analyzing the geometry of gradient Ricci soli-
tons. Hence we say that the soliton is non-isotropic if ∇f is a nowhere null vector
(i.e., ‖∇f‖2 6= 0), and that the soliton is isotropic if ‖∇f‖2 = 0, but∇f 6= 0.

32



1.9 Homogeneous spaces

Non-isotropic gradient Ricci solitons lead to local warped product decomposi-
tions in the locally conformally flat and half conformally flat cases, and their ge-
ometry resembles the Riemannian situation [16, 17]. The isotropic case is, however,
in sharp contrast with the positive definite setting since ∇f gives rise to a Walker
structure. Self-dual gradient Ricci solitons which are not locally conformally flat are
isotropic and steady. Moreover, they are described in terms of Riemannian extensions
as follows.

Theorem 1.27. [16] Let (M, g, f) be a four-dimensional self-dual gradient Ricci
soliton of neutral signature which is not locally conformally flat. Then (M, g) is
locally isometric to the cotangent bundle T ∗Σ of an affine surface (Σ, D) equipped
with a deformed Riemannian extension gD,Φ = gD + π∗Φ.

Moreover any such gradient Ricci soliton is steady and the potential function is
given by f = h ◦ π for some h ∈ C∞(Σ) satisfying the affine gradient Ricci soliton
equation

HesDh +2ρDs = 0, (1.26)

for any symmetric (0, 2)-tensor field Φ on Σ.

An affine surface (Σ, D) is an affine gradient Ricci soliton if there is a function
h ∈ C∞(Σ) satisfying Equation (1.26).

The previous result relates affine geometry of (Σ, D) and pseudo-Riemannian ge-
ometry of (T ∗Σ, gD,Φ), allowing the construction of an infinite family of steady gra-
dient Ricci solitons on T ∗Σ for any initial data (Σ, D, h) satisfying Equation (1.26).
It is important to remark here that the existence of affine gradient Ricci solitons im-
poses some restrictions on (Σ, D), as shown in [18] in the locally homogeneous case.
Moreover, note that Equation (1.26) does not depend on the deformation tensor Φ.
In consequence any affine gradient Ricci soliton gives rise to an infinite family of
self-dual gradient Ricci solitons just varying the deformation tensor Φ.

1.9 Homogeneous spaces

Homogeneity is central in differential geometry. In pseudo-Riemannian geometry,
roughly speaking, homogeneity means that for any two points there exists an isometry
sending one point to another. Thus geometry is the same at each point. In affine
geometry, the notion of homogeneity means that for any two points there exists an
affine transformation sending one point into the other. It is important to emphasize
that a pseudo-Riemannian manifold may be affine homogeneous for the Levi-Civita
connection but not homogeneous. In this section, we treat homogeneity from the
point of view of pseudo-Riemannian and affine geometry.
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Riemannian homogeneous spaces

A connected Riemannian manifold (M, g) is said to be homogeneous if the group of
isometries acts transitively on M . This means that if p, q ∈ M are any two points
then there exists an isometry ϕ of (M, g) such that ϕ(p) = q. Note that, in this case,
the connected component of the identity of the isometry group acts transitively on M
as well. This definition of homogeneity is equivalent to the existence of a connected
Lie group G and a smooth map

G×M −→ M

(q, p) 7→ q p = Lq(p)

such that for all q1, q2 ∈ G it satisfies:

(i) Lq1 is an isometry of (M, g).

(ii) Lq1 Lq2 = Lq1q2 .

(iii) For p1, p2 ∈M there exists an element q1 ∈ G such that Lq1(p1) = p2.

Now, we suppose that G acts effectively on M , i.e., Lq is the identity transfor-
mation of M if and only if q is the identity element e ∈ G. Note that we can always
replace G by the quotient group G/K, where K is the kernel of the map q 7→ Lq of
G in the isometry group. Thus, if G is a connected Lie group which acts on (M, g)
as a transitive and effective group of isometries, then G can be identified with a Lie
subgroup of the isometry group.

Let p ∈ M and let H = {q ∈ G| qp = p} be the isotropy subgroup of p. Then
M is diffeomorphic to the quotient G/H and we have the canonical projection

π : G −→ G/H .

It is a principal fiber bundle over M with structure group H . The subgroup H is
closed but not necessarily connected. A Riemannian metric g on G/H is called G-
invariant if the action tq : G/H → G/H with tq(sH) = qsH is an isometry, for all
q ∈ G. In this case (G/H, g) is called a homogeneous Riemannian space. One says
that (M, g) is locally homogeneous if for each p, q ∈ M , there exist neighborhoods
U of p and V of q, and a local isometry ϕ : U → V such that ϕ(p) = q.

Simply connected homogeneous Riemannian manifolds of dimension 2 are sym-
metric. Three-dimensional complete and simply connected homogeneous Riemann-
ian manifolds are either symmetric spaces or Lie groups with a left-invariant Rie-
mannian metric [97] (see [81] for a modern exposition and [23] for an extension to
the three-dimensional Lorentzian setting). The same result holds true in the four-di-
mensional case, as shown by Bérard-Bergery:
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Theorem 1.28. [9] Let (M, g) be a four-dimensional complete and simply connected
Riemannian homogeneous manifold. Then either (M, g) is symmetric or it is isomet-
ric to a Lie group with a left-invariant metric.

In particular, either M is one of the groups ˜SL(2,R) × R, SU(2) × R or it is
a solvable Lie group. Four-dimensional solvable Lie algebras are obtained as ex-
tensions of the three-dimensional unimodular Lie algebras: the abelian Lie algebra
r3, the Heisenberg algebra h3, the Poincaré algebra e(1, 1) of the group of rigid mo-
tions of the Minkowski 2-space and the Euclidean algebra e(2) of the group of rigid
motions of the Euclidean 2-space. Moreover, the solvable and simply connected
four-dimensional Lie groups are the following:

(i) The non-trivial semi-direct products Rn E(2) and Rn E(1, 1).

(ii) The semi-direct products Rn R3.

(iii) The non-nilpotent semi-direct products R nH3, where H3 is the Heisenberg
group.

Let (M, g) be a connected n-dimensional Riemannian manifold. Further letM =
G/H , where G is a group of isometries of M acting transitively and effectively on
M . We denote by H the isotropy group at a point p ∈ M . Let g denote the Lie
algebra of G and h the Lie algebra of H .

Definition 1.29. M = G/H is called reductive if there exists a vector subspace m of
g such that

g = h⊕m, (1.27)

where m is the Ad(H)-invariant subspace on g, i.e., Ad(H)m ⊂ m (see [71, 100]).

Note that when H is connected Ad(H)m ⊂ m is equivalent to [h,m] ⊂ m, and
thatH is always connected ifM is simply connected. Moreover, ifH is compact, the
decomposition always exists since we can take m = h⊥ with respect to an Ad(H)-
invariant inner product on g.

If G/H is a homogeneous reductive space which admits a pseudo-Riemannian
metric with G acting by isometries, then the curvature tensor R takes a simpler form,
which facilitates the study of the geometry of these spaces. It is important to empha-
size that reductivity is not an intrinsic property of (M, g) but of the description of
M as a coset space G/H . For example, in neutral or Lorentzian signature reductive
decompositions may not exist. Fels and Renner [54] classified four-dimensional non-
reductive homogeneous spaces, and their work will be essential in the development
of Chapter 3.
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Half conformally flat homogeneous manifolds

De Smedt and Salamon [47] classified half conformally flat left-invariant Riemannian
metrics on Lie groups, showing the following.

Theorem 1.30. [47] A four-dimensional homogeneous manifold is strictly anti-self-
dual if and only if it is a complex space form or a simply connected Lie group Gα
corresponding to the solvable Lie algebra gα given by

[e1, e2] = e2 − αe3, [e1, e3] = αe2 + e3, [e1, e4] = 2e4, [e2, e3] = −e4, (1.28)

where {e1, . . . , e4} is an orthonormal basis.

Note that the choice of orientation has no role at all in Theorem 1.30 so that one
may replace anti-self-duality by self-duality.

Homogeneous affine surfaces

We say that an affine surface (Σ, D) is locally homogeneous if given any two points
p and q of Σ, there exists a local diffeomorphism Ψ intertwining p and q such that
Ψ∗D = D. The following result was proved by Opozda [90] (see [22] for a different
proof). It is fundamental in the subject.

Theorem 1.31. [90] Let (Σ, D) be a locally homogeneous affine surface which is
not flat. Then at least one of the following three possibilities holds which describe
the local geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols DΓij
k are

constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form

DΓij
k = (x1)−1Cij

k,

for Cijk constant and x1 > 0.

(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Surfaces of TypeA and Type B have different geometric properties. For example,
the Ricci tensor of any Type A surface is symmetric and this may fail for a Type B
surface. Indeed, the Ricci tensor of a Type B surface may even be skew-symmetric;
this is closely related to the existence of non-flat affine Osserman structures [60].
The geometry of Type B surfaces is not so rigid as that of the Type A surfaces. On
the other hand, any Type A surface is projectively flat and again this may fail for a
Type B surface.
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Remark 1.32. The different types A, B and C are not exclusive (see [18]).

(i) There are no non-flat surfaces which are both of Type A and Type C.

(ii) The only non-flat surfaces which are of both Type B and Type C are the hyper-
bolic plane and the Lorentzian analogue realized as the half plane models with
metrics ds2 = 1

(x1)2
{(dx1)2 + (dx2)2} and ds2 = 1

(x1)2
{(dx1)2 − (dx2)2},

respectively.

(iii) A Type B affine surface is also of TypeA if and only if it is flat or the Christof-
fel symbols satisfy DΓ12

1 = DΓ22
1 = DΓ22

2 = 0.
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Chapter 2

Conformally Einstein homogeneous
Riemannian manifolds

The existence of conformally Einstein metrics amounts to understand a rather com-
plicated PDE as Brinkmann showed in [14]. Homogeneity allows a reduction of the
problem to a system of algebraic equations and our purpose in this chapter is to pro-
vide a complete description of homogeneous conformally Einstein metrics in dimen-
sion four. Previous work of Jensen [70] showed that four-dimensional homogeneous
Einstein metrics are symmetric and thus locally a product of two surfaces of con-
stant sectional curvature or a real or a complex space form. Our main result provides
a classification of conformally Einstein and Bach-flat homogeneous four-manifolds.
In this chapter we report on work investigated in [28].

Theorem 2.1. Let (M, g) be a four-dimensional complete and simply connected con-
formally Einstein homogeneous Riemannian manifold. Then (M, g) is locally sym-
metric or otherwise it is homothetic to one of the Lie groups determined by the fol-
lowing solvable Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) The Lie algebra gα = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = e1−αe2, [e4, e2] = αe1+e2, [e4, e3] = 2e3 .

(iii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Here {e1, . . . , e4} is an orthonormal basis. Moreover, the Lie groups (Gα, 〈 · , · 〉) in
Assertion (ii) are half conformally flat.

Remark 2.2. Following the notation in [4], the underlying Lie algebras in Theo-
rem 2.1 are r′

4,1, 1
4α

if α 6= 0 or r4, 1
4
, 1
4

if α = 0 in Assertion (i), d′
4, 1
α

if α 6= 0 or d4, 1
2

if α = 0 in Assertion (ii) and r4,(α+1)2,α2 in Assertion (iii).
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Remark 2.3. Recall that if two Riemannian metrics are conformally equivalent,
g̃ = e2σg, then their Weyl tensors of type (1, 3) coincide and thus W̃ = e2σW
for the Weyl tensors of type (0, 4). The converse does not hold in general, but it is
true in dimension four on any open set where W 6= 0 (see [63]). Furthermore, if
the conformal manifolds (M, g) and (M, g̃) are both homogeneous, then ‖W‖2 and
‖W̃‖2 are constant and, since ‖W̃‖2 = e−4σ‖W‖2, either g and g̃ are homothetic or
otherwise both metrics are locally conformally flat. We will make extensively use of
these facts to obtain the different homothety classes in Theorem 2.1.

Theorem 2.4. Let (M, g) be a four-dimensional complete and simply connected
strictly Bach-flat homogeneous Riemannian manifold. Then (M, g) is homothetic
to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra g = Re4 n e(1, 1) given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .

(ii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Here {e1, . . . , e4} is an orthonormal basis.

Remark 2.5. The underlying Lie algebras in Theorem 2.4 are aff(R) × aff(R) in
Case (i) and d4,µ with µ = 1

10(5 − 3
√

5) in Case (ii), following again the notation
in [4].

The chapter is organized as follows. In Section 2.1 we give the coordinate ex-
pressions of the metrics as well as the underlying structure of conformally Einstein
and strictly Bach-flat manifolds. In Section 2.2 locally symmetric Bach-flat four-
manifolds are shown to be either Einstein or locally conformally flat (cf. Lemma 2.8).
Hence the analysis of the Bach-flat condition is considered separately for the different
four-dimensional Lie groups through Sections 2.4–2.7. The components of the Bach
tensor give polynomials in the corresponding structure constants. Therefore, deter-
mining the Bach-flat Lie groups equals to solve some rather complicated polynomial
systems. We make use of Gröbner bases theory previously introduced in Section 2.3.
The proofs of Theorems 2.1 and 2.4 are completed in Section 2.8 and in Section 2.9.
Finally in Section 2.10, as an application of the previous results, we determine the
four-dimensional homogeneous Bach-flat Ricci solitons.
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2.1 Coordinate expressions

As a matter of notation, for a given orthonormal basis {e1, . . . , e4} on a Lie algebra
g, we denote by {E±i } the corresponding orthonormal basis of self-dual and anti-
self-dual two-forms in Λ2

±(g) given by:

E±1 =
1√
2

(
e1 ∧ e2 ± e3 ∧ e4

)
,

E±2 =
1√
2

(
e1 ∧ e3 ∓ e2 ∧ e4

)
,

E±3 =
1√
2

(
e1 ∧ e4 ± e2 ∧ e3

)
,

where {ei} is the dual basis of {ei}.

Conformally Einstein homogeneous metrics in Theorem 2.1–(i)

The structure equations of gα corresponding to Theorem 2.1–(i):

[e4, e1] = e1, [e4, e2] =
1

4
e2 + αe3, [e4, e3] = −αe2 +

1

4
e3

are given in the dual basis {ek} by

de4 = 0, de1 = e1 ∧ e4,

de2 = 1
4e

2 ∧ e4 − αe3 ∧ e4, de3 = αe2 ∧ e4 + 1
4e

3 ∧ e4 .
(2.1)

Integrating the expressions above gives coordinates (x, y, z, t) on R4 where

e1 = e−tdx, e2 = e−
1
4
t(dy − αzdt), e3 = e−

1
4
t(dz + αydt), e4 = dt,

so that the metric expresses as

gα = e−2tdx2 + e−
1
2
t(dy − αzdt)2 + e−

1
2
t(dz + αydt)2 + dt2 . (2.2)

Now, a straightforward calculation shows that the conformal metric g̃α = e
3
2
tgα is

Ricci-flat.
Observe that W± = 1

8 diag[1, 1,−2]. Therefore, the self-dual and anti-self-dual
Weyl curvature operators have a distinguished eigenvalue with one-dimensional cor-
responding eigenspace, which define an almost Hermitian structure and an opposite
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one. The structure Equations (2.1) show that the underlying almost complex struc-
tures (J±e1 = e4, J±e2 = ±e3) are integrable and moreover the corresponding
Kähler forms satisfy dΩ± = θ ∧ Ω± with θ = −1

4e
4. Hence (Gα, 〈 · , · 〉, J±)

is conformally Kähler and opposite-Kähler since both J± are integrable. Alterna-
tively, results in [48] show that, since g̃α is Einstein and W̃+ = W̃−, the confor-
mal metric gcα = (24‖W̃+‖2)

1
3 g̃α is Kähler with respect to both orientations, where

‖W̃+‖2 = 3
32e
−3t in the coordinates (x, y, z, t) of Equation (2.2). Finally, observe

that the Kähler metric gcα is locally a product N ×R2, where N is a warped product.

Conformally Einstein homogeneous metrics in Theorem 2.1–(ii)

A direct calculation shows that the Weyl tensor of (Gα, 〈 · , · 〉) corresponding to
Theorem 2.1–(ii) satisfies W+ = 0 and W− = diag[−2, 1, 1]. Hence, the distin-
guished eigenvalue of W− with corresponding one-dimensional eigenspace defines
a two-form E−1 on Gα. The structure equations

de4 = 0, de1 = e1 ∧ e4 + αe2 ∧ e4,

de2 = −αe1 ∧ e4 + e2 ∧ e4, de3 = 2e3 ∧ e4 − e1 ∧ e2,
(2.3)

show that the underlying almost complex structure (J−e1 = e2, J−e3 = −e4) is
integrable and moreover dE−1 = θ ∧ E−1 with θ = e4. Hence (Gα, 〈 · , · 〉, J−)
is conformally opposite-Kähler, since J− induces an opposite orientation on Gα.
Alternatively, results in [48] show that, since g̃α is Einstein, the conformal met-
ric gcα = (24‖W̃−‖2)

1
3 g̃α is Kähler with respect to the opposite orientation, where

‖W̃‖2 = 6e−12t in the coordinates (x, y, z, t) where the metric expresses as:

gα = e−2t(dx+ αydt)2 + e−2t(dy − αxdt)2

+ e−4t(dz + 1
2(xdy − ydx)− 1

2α(x2 + y2)dt)2 + dt2 .
(2.4)

Let V be a vector space equipped with an inner product 〈·, ·〉 and let A be an
algebraic curvature tensor on V . Fix z ∈ V . The associated Jacobi operator is
defined by the linear map

JA(z) : V → V, JA(z)(x) 7→ (A(z, ·)z)x = A(z, x)z .

It is possible to restrict the domain of this operator to z⊥ by the curvature identi-
ties (1.1). Observe that this operator is self-adjoint. Indeed:

〈JA(z)(x), y〉 = 〈A(z, x)z, y〉 = A(z, x, z, y) = 〈A(z, y)z, x〉 = 〈x,JA(z)(y)〉 .
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Let z ∈ V be a unit vector and let JA(z) be the associated Jacobi operator. If
{x1, . . . , xn−1} is an orthonormal basis for z⊥, then

tr(JA(z)) =
n−1∑
i=1

εi〈JA(z)xi, xi〉 =
n−1∑
i=1

εi〈A(z, xi)z, xi〉 = ρA(z, z) .

If x ∈ z⊥ is a unit non-zero vector, then π = 〈{x, z}〉 is a non-degenerate plane of
V , i.e., the restriction of 〈·, ·〉 to π is non-degenerate. In consequence, the sectional
curvature of π is given by:

κA(π) =
〈A(z, x)z, x〉

〈x, x〉〈z, z〉 − 〈x, z〉2
=
〈JA(z)x, x〉
〈x, x〉〈z, z〉

.

In particular, if we restrict to the definite positive case, the eigenvalues of the Jacobi
operator JA(z) represent the extremal values of the sectional curvature of all planes
containing z.

Let A be an algebraic curvature tensor in a vector space equipped with an inner
product (V, 〈 · , · 〉) of signature (ν, n − ν). We say that (V, 〈 · , · 〉, A) is spacelike
Osserman (resp. timelike Osserman) if the (possibly complex) eigenvalues of the
associated Jacobi operator JA are constant in the spacelike pseudo-sphere S+(V )
(resp. in the timelike pseudo-sphere S−(V )). Assuming ν > 0 and n− ν > 0, both
conditions are equivalent [59] and we will say that (V, 〈 · , · 〉, A) is Osserman.

In a purely geometric context, we must differentiate between pointwise Osserman
and global Osserman conditions. A pseudo-Riemannian manifold (M, g) is called
pointwise Osserman if the eigenvalues of the Jacobi operators J (x) = R(x, ·)x do
not depend on the unit vector x ∈ S±p (M) but they can change from point to point. If
the eigenvalues of the Jacobi operators do not vary from point to point then (M, g) is
called globally Osserman. Observe that any isotropic pseudo-Riemannian manifold
is globally Osserman. Therefore, real, complex and para-complex space forms are
examples of globally Osserman manifolds.

Since the Ricci tensor of a pseudo-Riemannian manifold is obtained from the
trace of the Jacobi operators, ρ(x, x) = tr(J (x)), any pointwise Osserman manifold
is necessarily Einstein and then it has constant sectional curvature in dimension 3.
In this case, pointwise and globally Osserman conditions are equivalent. Moreover,
Osserman condition is non-trivial for dimension ≥ 4. Although the description of
Osserman manifolds is still an open question, in certain situations it is known a com-
plete classification (see [11, 12, 40] and [59] for more information).

Remark 2.6. Let (M, g) be a four-dimensional pseudo-Riemannian globally Osser-
man manifold. It was shown in [12] that, if the Jacobi operators are diagonalizable,
then (M, g) is locally isometric to a real, complex or para-complex space form. Note
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that there are many pointwise Osserman manifolds in dimension four which do not
correspond to the situation above [61].

Observe that in Theorem 2.1–(ii) the conformal metric (R4, g̃α = e3tgα) is Ricci-
flat and anti-self-dual. Hence we obtain a pointwise Osserman manifold [61]. Fur-
thermore, for any unit vector field X , the Jacobi operator J (X) = R(X, · )X has
eigenvalues µ = 0, µ = −e−3t and µ = 1

2e
−3t, the latter with multiplicity two.

Since the non-zero eigenvalues are in a ratio −1 : 1
2 they do not correspond to the

eigenvalue structure of any globally Osserman manifold.

Conformally Einstein homogeneous metrics in Theorem 2.1–(iii)

The eigenvalue structure of the self-dual and anti-self-dual Weyl curvature tensors
corresponding to Theorem 2.1–(iii) is given by:

W+
α = α(α+ 1) diag[α,−(α+ 1), 1] = W−α . (2.5)

This shows that {E+
i , E

−
i }, i = 1, 2, 3, define pairs of two-forms on Gα so that

E+
i ∧E

−
i = 0 and E+

i ∧E
+
i = −E−i ∧E

−
i for all i = 1, 2, 3. Furthermore, writing

the structure equations of the Lie algebra (gα, 〈 · , · 〉α) as

de4 = 0, de1 = e1 ∧ e4, de2 = (α+ 1)2e2 ∧ e4, de3 = α2e3 ∧ e4, (2.6)

one has dE±i = θi ∧E±i with θ1 = −(α2 + 2α+ 2)e4, θ2 = −(α2 + 1)e4 and θ3 =
−(2α2+2α+1)e4. Therefore {E+

i , E
−
i } is a conformal symplectic pair onGα for all

i = 1, 2, 3 (see [7] for more information about symplectic pairs). In particular the six
two-forms E±i are conformally symplectic. Furthermore, integrating the expressions
in Equation (2.6) gives coordinates (x, y, z, t) on R4 where

e1 = e−tdx, e2 = e−(α+1)2tdy, e3 = e−α
2tdz, e4 = dt,

so that the metric expresses as

gα = e−2tdx2 + e−2(α+1)2tdy2 + e−2α2tdz2 + dt2 . (2.7)

As a consequence, (R4, gα) has the structure of a multiply warped space of the form
R×f1 R×f2 R×f3 R. Finally, a straightforward calculation shows that the conformal
metric g̃α = e2(α2+α+1)tgα is Ricci-flat.

Remark 2.7. Bach-flat Kähler metrics are conformally Einstein [48]. Due to the
conformal invariance of the Bach tensor, any Bach-flat conformally Kähler manifold
is also conformally Einstein. The converse result is certainly not true. For instance,
the eigenvalue structure of W± shows that the homogeneous spaces corresponding
to Theorem 2.1–(iii) cannot be Kähler with respect to any conformal metric.
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2.2 Conformally Einstein symmetric spaces

Four-dimensional homogeneous Einstein manifolds are locally symmetric [70]. Fur-
thermore, any locally conformally flat homogeneous manifold is locally symmet-
ric [99].

Lemma 2.8. A four-dimensional locally symmetric Bach-flat manifold is Einstein or
locally conformally flat.

Proof. Let (M4, g) be locally symmetric. Then it is an Einstein manifold or it is
locally a product of the form R × N3(c), R2 × N2(c) or N2

1 (c1) × N2
2 (c2), where

Nk(c) is a k-dimensional manifold of constant curvature c. In the case R × N3(c),
(M, g) is locally conformally flat since N3(c) is of constant curvature. An explicit
calculation of the Bach tensor shows that R2 × N2(c), where N2(c) is a surface of
constant curvature, is Bach-flat if and only if c = 0, thus (M, g) being flat. Finally,
the Bach tensor of N2

1 (c1)×N2
2 (c2) vanishes if and only if c2

1− c2
2 = 0, thus leading

to locally conformal flatness (c1 = −c2) or to an Einstein manifold (c1 = c2).

The above lemma shows that four-dimensional locally symmetric Bach-flat met-
rics are either Einstein or locally conformally flat. The existence of left-invariant
Riemannian metrics with zero Bach tensor which are neither conformally Einstein
nor half conformally flat was established in [1]. We will show that the examples
constructed by Abbena, Garbiero and Salamon are the only possible ones within the
framework of four-dimensional homogeneous manifolds.

2.3 Gröbner bases

Gröbner bases were introduced by Bruno Buchberger around the 1960’s. Ever since,
dozens of applications have been found for Gröbner bases. Nonetheless, to the best
of our knowledge, this topic had never been applied in Riemannian geometry. This
section contains a short introduction to the theory of Gröbner bases. In the rest of the
chapter, Gröbner bases will play an important role.

2.3.1 Monomial order and ideals

The notion of order of terms in polynomials is the principal ingredient in the division
algorithm and Gaussian elimination, where the success of both algorithms depends
on working systematically with the leading terms of polynomials. Furthermore, we
might intuit that when we work with arbitrary polynomials in several variables, where
there is no standard order, the order we choose is fundamental. Based on this fact,
what properties should this order have?
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Given a monomial xα = xα1
1 · · ·xαnn , the exponents α = (α1, . . . , αn) are ele-

ments of Zn≥0 and this observation establishes a one-to-one correspondence between
the monomials in R[x1, . . . , xn] and Zn≥0. A monomial order > on R[x1, . . . , xn] is
a relation > on Zn≥0, or equivalently, a relation on the set of monomials xα where
α ∈ Zn≥0, satisfying:

(i) > is a total order on Zn≥0.

(ii) If α > β and γ ∈ Zn≥0, then α+ γ > β + γ.

(iii) > is a well-order on Zn≥0.

We are specially interested in the following monomial orderings:

• Lexicographical Order: We say that α >lex β if in the vector α− β ∈ Zn, the
leftmost non-zero entry is positive.

• Graded Lexicographical Order: We say that α >grlex β if |α| > |β| or |α| =
|β| and α >lex β, where |α| =

∑
i αi.

• Graded Reverse Lexicographical Order: We say that α >grevlex β if |α| > |β|
or |α| = |β| and the rightmost non-zero entry of α− β ∈ Zn is negative.

The lexicographical order is analogous to the order of words used in dictionaries:
a > b > · · · > y > z or x1 > x2 > · · · > xn. Observe that a variable dominates
any monomial involving only smaller variables, regardless of its total degree. Hence,
we could take the total degrees of the monomials into account and order monomials
of bigger degree first and, after that, one may use the graded lexicographical order.

Let P =
∑

α aαx
α be a non-zero polynomial in R[x1, . . . , xn] and let > be a

monomial order. The multidegree of P is the maximum α ∈ Zn≥0 so that aα 6= 0,
where the maximum is taken with respect to the given monomial order. The corre-
sponding monomial is called the leading term LT (P) = aαx

α. A monomial ideal
is a polynomial ideal that can be generated by monomials. Therefore, a polyno-
mial P belongs to a monomial ideal I if and only if every term of P lies in I. Let
I ⊂ R[x1, . . . , xn] be a non-zero ideal and fix a monomial order on R[x1, . . . , xn].
We denote by LT (I) the set of leading terms of non-zero elements of I, i.e.,

LT (I) = {cxα : there exists P ∈ I \ {0} with LT (P) = cxα},

and we denote by 〈LT (I)〉 the ideal generated by the elements of LT (I). Ob-
serve that LT (Pi) ∈ LT (I) ⊂ 〈LT (I)〉 which implies 〈LT (P1), . . . , LT (Pk)〉 ⊂
〈LT (I)〉. However, it is important to emphasize that if I = 〈P1, . . . ,Pk〉, then
〈LT (I)〉 may be strictly larger than the ideal 〈LT (P1), . . . , LT (Pk)〉.
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For example, consider I = 〈P1,P2〉 the ideal generated by P1 = x3 − 2xy and
P2 = x2y − 2y2 + x, where we fix the graded lexicographical order on monomials.
Then x · P2 − y · P1 = x2, so x2 ∈ I. Therefore, x2 = LT (x2) ∈ 〈LT (I)〉 but
x2 /∈ 〈LT (P1), LT (P2)〉. Hence, 〈LT (I)〉 6= 〈LT (P1), LT (P2)〉.

The next result is crucial and it is known as the Hilbert Basis Theorem:

Theorem 2.9. [66] Every ideal I ⊂ R[x1, . . . , xn] has a finite generating set.

For monomial ideals this result is called Dickson’s Lemma. The importance of
the above result is not only that every ideal has a finite basis, but also that its proof is
based on 〈LT (g1), . . . , LT (gν)〉 = 〈LT (I)〉 (see for example [45]).

Definition 2.10. Fix a monomial order on the polynomial ring R[x1, . . . , xn]. A finite
subset G = {g1, . . . ,gν} of an ideal I is said to be a Gröbner basis (or Gröbner-
Shirshov basis) with respect to some monomial order if

〈LT (g1), . . . , LT (gν)〉 = 〈LT (I)〉 .

The Hilbert Basis Theorem guarantees that any non-zero ideal I ⊂ R[x1, . . . , xn]
has a Gröbner basis. Furthermore, any Gröbner basis for an ideal I is a basis of
I. However, how can we know that a given basis of an ideal is a Gröbner basis?
Buchberger’s algorithm (among others) provides a constructive algorithm to find one
such basis. This rather simple notion allows us to have simple algorithmic solutions
to different problems.

• The remainder of the division algorithm applied to a polynomial P divided by
a Gröbner basis G of an ideal I is zero if and only if P belongs to I, a property
that does not necessarily hold if G is not a Gröbner basis. Therefore, this fact
provides an algorithm to check the Ideal Membership Problem.

• As another example, when the set of solutions of a polynomial system is not
too large, the calculation of a Gröbner basis with respect to the lexicographical
order gives rise to elimination theory, simplifying the problem of finding all
common roots, thus generalizing the classical Gaussian method of the linear
case.

Just as a matter of curiosity, let us mention that Gröbner bases even generalize the
simplex method used in mathematical optimization. We refer the interested reader
to [45] for more information on the theory of Gröbner bases.
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2.3.2 Gröbner basis in homogeneous manifolds

One of the most important applications of Gröbner bases is to eliminate variables. We
pleasantly found out that these methods can be very useful to classify homogeneous
geometric structures such as Einstein metrics, Bach-flat structures or Ricci solitons.

The components of the Bach tensor for a left-invariant metric on a Lie group
give polynomials on the structure constants. Hence, to obtain a full classification
of Bach-flat Lie groups, one needs to solve the corresponding polynomial system
of equations. When the system under consideration is simple, it is an elementary
problem to get all common roots, but if the number of equations and their degrees
increase, it may become a quite unmanageable assignment. Gröbner bases theory
provides very powerful tools to solve large polynomial systems of equations. The
basic idea is to use elimination theory. But, how does elimination work? Consider
the following polynomial system:

x2 + y + z = 1, x+ y2 + z = 1, x+ y + z2 = 1, (2.8)

and let I = 〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉 ⊂ R[x, y, z] be the
ideal. We compute a Gröbner basis G of I with respect to the lexicographical order
and we obtain:

g1 = x+ y + z2 − 1,

g2 = y2 − y − z2 + z,

g3 = z2(2y + z2 − 1),

g4 = z2(z4 − 4z2 + 4z − 1) .

(2.9)

Since Equations (2.8) and (2.9) have the same solutions and g4 involves only z, then
the possible z’s are 0, 1 and −1 ±

√
2. Now, substituting these values into g2 and

g3 one can determine all possible solutions for y. Finally, g1 gives the corresponding
x’s.

Given I = 〈P1, . . . ,Pk〉 ⊂ R[x1, . . . , xn], the ν-th elimination ideal Iν is the
ideal of R[xν+1, . . . , xn] defined by Iν = I ∩ R[xν+1, . . . , xn]. Therefore, Iν con-
sists of all P1 = · · · = Pk = 0. In other words, eliminating x1, . . . , xν means
finding non-zero polynomials in the ν-th elimination ideal Iν . It is important to em-
phasize that different order of the variables leads to different elimination ideals. Note
that if two sets of polynomials generate the same ideal, the corresponding zero sets
must be identical.

Proposition 2.11. [45] Let I ⊂ R[x1, . . . , xn] be an ideal and let G be a Gröbner
basis of I with respect to the lexicographical order. Then, for every 0 ≤ ν ≤ n, the
set Gν = G ∩ R[x1, . . . , xn] is a Gröbner basis of the ν-th elimination ideal Iν .
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The above result shows that a Gröbner basis for the lexicographical order elim-
inates not only the first variable, but also the first two variables, the first three vari-
ables, and so on. Therefore, our strategy for solving the rather large polynomial sys-
tems consists of obtaining “better” polynomials that belong to the ideals generated
by the corresponding polynomial systems.

2.4 Left-invariant metrics on Re4 nE(1, 1) and Re4 nE(2)

Let g = Rng3 be a semi-direct extension of the unimodular Lie algebra g3 = e(1, 1)
or g3 = e(2). Let 〈·, ·〉 be an inner product on g and 〈·, ·〉3 its restriction to g3.
Following the work of Milnor [82], there exists an orthonormal basis {v1,v2,v3} of
g3 such that

[v2,v3] = λ1v1, [v3,v1] = λ2v2, [v1,v2] = 0, (2.10)

where λ1, λ2 ∈ R and λ1λ2 6= 0. Moreover, the associated Lie group corresponds to
E(2) (resp. E(1, 1)) if λ1λ2 > 0 (resp. λ1λ2 < 0). The algebra of derivations of g3

is given by

der(g3) =


 b a c

−λ2
λ1
a b d

0 0 0

 ; a, b, c, d ∈ R

 .

Let {v1,v2,v3,v4} be a basis of g, with {v1,v2,v3} given by Equation (2.10), and
g = Rv4 ⊕ g3. Since Rv4 needs not to be orthogonal to g3, set ki = 〈vi,v4〉, for
i = 1, 2, 3. Let ê4 = v4 −

∑
i kivi and normalize it to get an orthonormal basis

{e1, . . . , e4} of g = R⊕ g3 so that

[e2, e3] = λ1e1,

[e3, e1] = λ2e2,

[e4, e1] = 1
R{be1 − λ2( a

λ1
+ k3)e2},

[e4, e2] = 1
R{(a+ k3λ1)e1 + be2},

[e4, e3] = 1
R{(c− k2λ1)e1 + (d+ k1λ2)e2}, R > 0 .

(2.11)

Lemma 2.12. The Lie group Re4 n E(1, 1) admits a non-symmetric Bach-flat left-
invariant metric if and only if it is isomorphically homothetic to a Lie group deter-
mined by the solvable Lie algebra given by

[e2, e3] = e1, [e1, e3] = (2 +
√

3)e2,

[e4, e1] =
√

6 + 3
√

3e1, [e4, e2] =
√

6 + 3
√

3e2 .
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Moreover, the Lie group Re4 n E(2) does not admit any non-symmetric Bach-flat
left-invariant metric.

Proof. We start analyzing the Bach tensor of Re4 n E(1, 1) and Re4 n E(2). In
order to simplify the expressions we use the notation A = a

λ1
+ k3, C = c − k2λ1

and D = d + k1λ2. Moreover, since the structure constants of g3 satisfy λ1λ2 6= 0,
one may work with a homothetic basis ẽk = 1

λ1
ek so that we may assume λ1 = 1. A

long but straightforward calculation shows that the components of the Bach tensor,
with the structure constants in Equation (2.11), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = λ2

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 1
12R3P34, B44 = 1

24R4P44,

(2.12)

where the polynomials Pij’s correspond to:

P11 = 12(A2 +R2)2λ42 − 4(A2 +R2)2λ32 − (20b2 − C2 − 8D2)(A2 +R2)λ22

+ (12A4 − 4(2b2 − 3C2 −D2 − 6R2)A2 − 42bCDA− 4R2(2b2 − 3C2 −D2 − 3R2))λ2

− 20A4 + (28b2 − 40C2 + 3D2 − 40R2)A2 − 42bCDA− 20R4 + (3D2 − 40C2)R2

− 4(C2 +D2)(5C2 +D2) + b2(43C2 +D2 + 28R2),

P12 = −16b(A2+R2)Aλ32−8CD(A2+R2)λ22−(5CDA2−b(5C2−16D2)A+5CDR2)λ2

+ 16bA3 − 8CDA2 + b(16C2 − 5D2 + 16R2)A+ CD(21b2 − 8(C2 +D2 +R2)),

P13 = −8AD(A2 +R2)λ32 + (4AD(A2 +R2)− 3bCR2)λ22

+ (DA3 − 9bCA2 +D(12b2 +R2 − 8(C2 +D2))A− 12bCR2)λ2

+ 3b(8CA2 + 3bDA− 3b2C + 8C(C2 +D2 +R2)),

P14 = −8D(A2 +R2)λ22 + (4DA2 + 3bCA+ 4DR2)λ2

+DA2 + 3bCA+D(3b2 +R2 − 8(C2 +D2)),

P22 = −20(A2 +R2)2λ42 + 12(A2 +R2)2λ32 + (28b2 + 3C2 − 40D2)(A2 +R2)λ22

− (4A4 + 4(2b2 − C2 − 3D2 + 2R2)A2 − 42bCDA+ 4R2(2b2 − C2 − 3D2 +R2))λ2

+ 12A4 − (20b2 − 8C2 −D2 − 24R2)A2 + 42bCDA

+ 12R4 + (8C2 +D2)R2 − 4(C2 +D2)(C2 + 5D2) + b2(C2 + 43D2 − 20R2),

P23 = −(AC − 24bD)(A2 +R2)λ22 − (4(AC + 3bD)R2 +A(4CA2 + 9bDA+ 9b2C))λ2

+ 8CA3 + 4C(2(C2 +D2 +R2)− 3b2)A− 3bD(3b2 +R2 − 8(C2 +D2)),

P24 = −C(A2 +R2)λ22 − (4CA2 − 3bDA+ 4CR2)λ2
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+ 8CA2 + 3bDA− 3b2C + 8C(C2 +D2 +R2),

P33 = −4(A2 − 3R2)(A2 +R2)λ42 + 4(A2 − 3R2)(A2 +R2)λ32

− ((12b2 + C2 − 8D2)A2 + 3(4b2 + C2 − 8D2)R2)λ22

+ 2(2A4 + 2(6b2 − C2 −D2 − 2R2)A2 + 9bCDA+ 6R2(2b2 − C2 −D2 −R2))λ2

− 4A4 − (12b2 − 8C2 +D2 − 8R2)A2 − 18bCDA

+ 12R4 − 3(4b2 − 8C2 +D2)R2 + 3(C2 +D2)(4(C2 +D2)− 19b2),

P34 = −8A(A2 +R2)λ42 + 8A(A2 +R2)λ32 +A(C2 − 8D2)λ22

+ (8A3 + 4(C2 +D2 + 2R2)A+ 9bCD)λ2

− 8A3 − 9bCD −A(8C2 −D2 + 8R2),

P44 = 4(3A2 −R2)(A2 +R2)λ42 − 4(3A4 + 2R2A2 −R4)λ32

+ ((4b2 − 3C2 + 24D2)A2 + (4b2 − C2 + 8D2)R2)λ22

+ (4R4 − 4(2A2 + 2b2 + C2 +D2)R2 − 2A(6A3 + 4b2A+ 6(C2 +D2)A+ 9bCD))λ2

+ 12A4 + (4b2 + 24C2 − 3D2 + 8R2)A2 + 18bCDA

− 4R4 + (4b2 + 8C2 −D2)R2 + (C2 +D2)(13b2 + 12(C2 +D2)) .

Hence, Re4 n E(1, 1) or Re4 n E(2) admit a Bach-flat left-invariant metric if
and only if the structure constants in Equation (2.11) satisfy the equations {Pij =
0}. Let I ⊂ R[A, b, λ2, C,D,R] be the ideal generated by the polynomials Pij .
We compute a Gröbner basis G of I with respect to the lexicographical order and a
detailed analysis of that basis shows that the polynomial

g0 = D6(C2 +D2)(2D2 +R2)(25D2 + 4R2)(16D2 + 5R2)

×(9D2 + 16R2)(25D2 + 24R2)(80D4 +R4 − 16D2R2)
(2.13)

belongs to G. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide, then
necessarily D = 0.

Next, we compute a Gröbner basis G1 of the ideal generated by G ∪ {D} with
respect to the lexicographical order and we get that the polynomial

g1 = C4(9C2 + 4R2)(25C2 + 16R2)(49C2 + 24R2)λ3
2

belongs to G1. Thus, since λ2 6= 0, we get C = 0.
Now, for C = D = 0, Equation (2.12) implies that

P34 = −8(λ2 − 1)2A(A2 +R2)(λ2
2 + λ2 + 1)

and therefore we are led to the following possibilities:

(1)λ2 = 1, (2)A = 0 .
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Case (1):

C = 0, D = 0, λ2 = 1. In this case, a direct calculation shows that the correspond-
ing Lie group given by Equation (2.11) is locally conformally flat and therefore a
symmetric manifold [99].

Case (2):

C = 0, D = 0, A = 0. Excluding λ2 = 1 solved in the previous case, Equa-
tion (2.12) implies that the Bach-flat condition is equivalent to

b2 −R2(λ2
2 + λ2 + 1) = 0, 3R2 − b2(λ2 + 4) = 0,

from where it easily follows that

b = ±R, λ2 = −1,

in which case a straightforward calculation shows that the manifold is Einstein and
thus locally symmetric [70], or otherwise

b = ±R
√

6 + 3
√

3, λ2 = −2−
√

3, or (2.14)

b = ±R
√

6− 3
√

3, λ2 = −2 +
√

3 . (2.15)

Now, considering the isometry e4 7→ −e4 one has b > 0 in both cases. Setting
ē1 = (2 +

√
3)e2, ē2 = (2 +

√
3)e1, ē3 = (2 +

√
3)e3, ē4 = (2 +

√
3)e4 one

interchanges the brackets given by Equations (2.15) and (2.14). Moreover since this
isomorphism transforms the original metric 〈·, ·〉 into a homothetic one 〈·, ·〉∗ = (2 +√

3)2〈·, ·〉 and we work modulo homotheties, we change the metric so that ēi remains
an orthonormal basis. Hence we reduce this case to the homothetically isomorphic
Lie algebra given by b = R

√
6 + 3

√
3 with λ2 = −2−

√
3.

Note that λ1λ2 = λ2 < 0; hence the group is Re4nE(1, 1) and a straightforward
calculation shows that this case is not locally symmetric. This finishes the proof.

2.5 Left-invariant metrics on Re4 nH3

Let g = Rn h3 be a semi-direct extension of the Heisenberg algebra h3. Let 〈·, ·〉 be
an inner product on g and 〈·, ·〉3 its restriction to h3. Then, there exists an orthonormal
basis {v1,v2,v3} of h3 such that (see [82])

[v3,v2] = 0, [v3,v1] = 0, [v1,v2] = λ3v3, (2.16)
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where λ3 6= 0 is a real number. The algebra of all derivations of h3 is given with
respect to the basis {v1,v2,v3} by

der(h3) =


 α11 α12 0

α21 α22 0

ĥ f̂ α11 + α22

 ; αij , f̂ , ĥ ∈ R

 .

We rotate the basis elements {v1,v2} so that the matrix A = (αij) decomposes as
the sum of a diagonal matrix and a skew-symmetric matrix. Hence

der(h3) =


 a c 0

−c d 0

h f a+ d

 ; a, c, d, f, h ∈ R

 ,

and consider the Lie algebra g = Rv4 ⊕ h3 given by

[v3,v2] = 0, [v3,v1] = 0,

[v1,v2] = γv3, [v4,v1] = av1 − cv2 + hv3,

[v4,v2] = cv1 + dv2 + fv3, [v4,v3] = (a+ d)v3 .

Since Rv4 needs not to be orthogonal to h3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let
ê4 = v4 −

∑
i kivi and normalize it to get an orthonormal basis {e1, . . . , e4} of

g = R⊕ h3 so that

[e1, e2] = γe3,

[e4, e1] = 1
R{ae1 − ce2 + (h+ k2γ)e3},

[e4, e3] = 1
R(a+ d)e3,

[e4, e2] = 1
R{ce1 + de2 + (f − k1γ)e3}, R > 0 .

(2.17)

Lemma 2.13. The group Re4 nH3 admits a non-symmetric Bach-flat left-invariant
metric if and only if it is isomorphically homothetic to a Lie group determined by one
of the following solvable Lie algebras:

(i) The Lie algebra given by

[e1, e2] = e3, [e4, e1] = e1 − α e2,

[e4, e2] = α e1 + e2, [e4, e3] = 2 e3 .

In this case Re4 nH3 is half conformally flat.
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(ii) The Lie algebra given by

[e1, e2] = e3, [e3, e4] =
√

5
2
√

2
e3,

[e4, e1] = 1
4

√
7− 3

√
5 e1, [e2, e4] = 1

4

√
7 + 3

√
5 e2 .

Proof. First we obtain the Bach tensor of Re4 n H3. In order to simplify the ex-
pressions we use the notation F = f − k1γ and H = h + k2γ. Moreover, since
the structure constant of h3 satisfies γ 6= 0, one may work with a homothetic basis
ẽk = 1

γ ek so that we may assume γ = 1. A long but straightforward calculation
shows that the components of the Bach tensor, with the structure constants in Equa-
tion (2.17), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = 1

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 0, B44 = 1
24R4P44,

(2.18)

where the polynomials Pij’s correspond to:

P11 = 24ac2d− 16a3d+ 48ad3 + 84a2c2 + 16a2d2 − 108c2d2

+ (F 2 − 20(H2 +R2))a2 − 21(F 2 −H2)c2 − 3(4F 2 + 19H2 + 4R2)d2

+ 78FHac− 4(22H2 + 7R2)ad+ 78FHcd− 4(F 2 +H2 +R2)(F 2 − 3(H2 +R2)),

P12 = −58a2cd+58acd2−18a3c+24ac3−24c3d+18cd3−12FHa2+21FHc2−12FHd2

+(31F 2−2(4H2 +R2))ac−53FHad+(8F 2−31H2 +2R2)cd+8FH(F 2 +H2 +R2),

P13 = 53Facd−3Fc3−9Hd3+33Fa2c−28Ha2d+3Hac2−48Had2+24Hc2d−9Fcd2

+ 16H(F 2 +H2 +R2)a− 8F (F 2 +H2 +R2)c+ 24H(F 2 +H2 +R2)d,

P14 = −3Fa2 + 3Fc2 + 3Hac− 14Fad− 15Hcd+ 8F (F 2 +H2 +R2),

P22 = 24ac2d+ 48a3d− 16ad3 − 108a2c2 + 16a2d2 + 84c2d2

− 3(19F 2 + 4(H2 +R2))a2 + 21(F 2 −H2)c2 − (20F 2 −H2 + 20R2)d2

− 78FHac− 4(22F 2 + 7R2)ad− 78FHcd+ 4(F 2 +H2 +R2)(3F 2 −H2 + 3R2),

P23 = −53Hacd−9Fa3+3Hc3+9Ha2c−48Fa2d+24Fac2−28Fad2+3Fc2d−33Hcd2

+ 24F (F 2 +H2 +R2)a+ 8H(F 2 +H2 +R2)c+ 16F (F 2 +H2 +R2)d,

P24 = −3Hc2 + 3Hd2 − 15Fac+ 14Had+ 3Fcd− 8H(F 2 +H2 +R2),

P33 = 24ac2d− 16a3d− 16ad3 − 12a2c2 − 48a2d2 − 12c2d2
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+ (43F 2 + 28(H2 +R2))a2 − 9(F 2 +H2)c2 + (28F 2 + 43H2 + 28R2)d2

− 54FHac+ (104(F 2 +H2) + 44R2)ad+ 54FHcd− 20(F 2 +H2 +R2)2,

P44 = −72ac2d− 16a3d− 16ad3 + 36a2c2 + 16a2d2 + 36c2d2

+ (13F 2 + 4(H2 +R2))a2 + 9(F 2 +H2)c2 + (4F 2 + 13H2 + 4R2)d2 + 54FHac

− (16(F 2 +H2)− 12R2)ad− 54FHcd+ 4(3(F 2 +H2)−R2)(F 2 +H2 +R2) .

Therefore, Re4 n H3 admits a Bach-flat left-invariant metric if and only if the
structure constants given in Equation (2.17) satisfy the equations {Pij = 0}. Let
I ⊂ R[a, c, d,H, F,R] be the ideal generated by the polynomials Pij . We compute a
Gröbner basis G of I with respect to the lexicographical order and a detailed analysis
of the Gröbner basis shows that the polynomial

g0 = FR4(2F 2+R2)4(4F 2+R2)(F 2+H2+R2)2(4F 2+9R2)(9F 2+11R2)

× ((F 2 −H2)2 + F 2R2 +H2R2)(10000F 4 + 10200F 2R2 + 3087R4)

× (606208F 4 + 861952F 2R2 + 144669R4)

belongs to G. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide and
R > 0, then necessarily F = 0.

Next, we compute a Gröbner basis G′ of the ideal generated by G ∪ {F} with
respect to the lexicographical order and we get that the polynomial

g′0 = H(H2 +R2)(4H2 +R2)(4H2 + 9R2)(9H2 + 11R2)

belongs to G′. Thus, we get H = 0.
Now, computing a Gröbner basis G′′ of the ideal generated by G′ ∪ {H} with

respect to the graded reverse lexicographical order we find that the polynomial

g′′0 = (a− d)(24c2 − 8ad−R2)R4

belongs to G′′ and therefore we are led to the following possibilities:

(1) a = d, (2) 24c2 − 8ad−R2 = 0 .

Case (1):

F = 0, H = 0, a = d. In this case, Equation (2.18) implies that the Bach-flat
condition is equivalent to

4d4 +R4 − 5d2R2 = 0,
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from where we easily get

d = ±R or d = ±R
2
.

If d = ±R
2 , the manifold is half conformally flat and Einstein, thus locally symmetric

and homothetic to the complex hyperbolic plane. For d = ±R, the isometry e4 7→
−e4 lets us to take d = R. Now, a direct calculation shows that the manifold is half
conformally flat and non-symmetric, hence obtaining Assertion (i) in Lemma 2.13.
Furthermore, it follows from [47] that all the Lie groups in Lemma 2.13–(i) are iso-
metric.

Case (2):

F = 0, H = 0, 24c2 − 8ad−R2 = 0. Equation (2.18) implies that

P12 = −(a− d)c(18a2 + 18d2 + 68ad+R2) .

Since a = d was already solved in the previous case, we compute a Gröbner basis G2

of the ideal generated by G′′ ∪ {c(18a2 + 18d2 + 68ad+R2)} ⊂ R[R, a, c, d,H, F ]
with respect to the lexicographical order and we get that the polynomial

g2 = cd4(25c4 + 18c2d2 + d4)(961c4 + 1298c2d2 + 121d4)

belongs to G2. Thus, we have two possibilities:

(2.i) d = 0, (2.ii) c = 0 .

Case (2.i):

F = 0, H = 0, 24c2 − 8ad−R2 = 0, d = 0. In this case, from Equation (2.18) we
get that the Bach-flat condition is equivalent to

33a2c2 −R4 = 0, ac(3a2 + 4c2) = 0,

which does not hold since R > 0.

Case (2.ii):

F = 0, H = 0, 24c2− 8ad−R2 = 0, c = 0. Since d = 0 was solved in the previous
case, we have a = −R2

8d and Equation (2.18) implies that the Bach-flat condition is
equivalent to

64d4 − 56d2R2 +R4 = 0 .
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Thus, it follows that

d = ±1

4
R

√
7− 3

√
5 or (2.19)

d = ±1

4
R

√
7 + 3

√
5, (2.20)

and a straightforward calculation shows that none of these cases is locally symmet-
ric. Note that if we take e4 7→ −e4 one may assume that d > 0 in both cases.
Moreover, taking ē1 = −e2, ē2 = −e1, ē3 = −e3, ē4 = −e4, one reduces this case
to an only homothetically isomorphic Lie algebra. For d = −1

4R
√

7 + 3
√

5 we get
Assertion (ii) in Lemma 2.13, finishing the proof.

2.6 Left-invariant metrics on Re4 nR3

Let g = R n r3 be a semi-direct extension of the abelian Lie algebra r3. Let 〈·, ·〉 be
an inner product on g and 〈·, ·〉3 its restriction to r3. The algebra of all derivations
D of r3 is gl(3,R). If we fix D ∈ gl(3,R), there exists a 〈·, ·〉3-orthonormal basis
{v1,v2,v3} of r3 where D decomposes as a sum of a diagonal matrix and a skew-
symmetric matrix. Hence

der(r3) =


 a −b −c

b f −h
c h p

 ; a, b, c, f, h, p ∈ R

 .

Now, the corresponding semi-direct product g = Rn r3, is given by

[v1,v2] = 0, [v1,v3] = 0,

[v2,v3] = 0, [v4,v1] = av1 + bv2 + cv3,

[v4,v2] = −bv1 + fv2 + hv3, [v4,v3] = −cv1 − hv2 + pv3,

with respect to some basis {v1,v2,v3,v4} so that g = Rv4 ⊕ span{v1,v2,v3}.
Since Rv4 needs not to be orthogonal to r3, set ki = 〈vi,v4〉, for i = 1, 2, 3. Let
ê4 = v4 −

∑
i kivi and normalize it to get an orthonormal basis {e1, . . . , e4} of

g = R⊕ r3 so that

[e4, e1] = 1
R{ae1 + be2 + ce3}, [e4, e2] = 1

R{−be1 + fe2 + he3},

[e4, e3] = 1
R{−ce1 − he2 + pe3}, R > 0 .

(2.21)

Lemma 2.14. The group Re4 n R3 admits a non-symmetric Bach-flat left-invariant
metric if and only if it is isomorphically homothetic to a Lie group determined by one
of the following solvable Lie algebras:
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(i) [e4, e1] = e1, [e4, e2] = 1
4e2 + α e3, [e4, e3] = 1

4e3 − α e2 .

(ii) [e4, e1] = e1, [e4, e2] = (α+ 1)2e2, [e4, e3] = α2 e3, α > 0 .

Proof. A long but straightforward calculation shows that the components of the Bach
tensor of Re4 nR3, with the structure constants in Equation (2.21), are given by

B11 = 1
6R4P11, B12 = 1

6R4P12, B13 = 1
6R4P13, B14 = 0,

B22 = 1
6R4P22, B23 = 1

6R4P23, B24 = 0, B33 = 1
6R4P33,

B34 = 0, B44 = 1
6R4P44,

(2.22)

where the polynomials Pij’s correspond to:

P11 = a4+9a2b2+9a2c2−(f+p)a3+6(f+2p)ab2+6(2f+p)ac2−(2f2+2p2+7fp)a2

− 3f(5f + 4p)b2 − 3p(4f + 5p)c2 + 18h(f − p)bc+ 3(f + p)(f2 + p2)a

− (f − p)2(f2 + 3h2 + p2 + fp),

P12 = −12abc2 − 2a3b− 12ab3 + 12fb3 + 2(9f + 5p)a2b+ 6ha2c+ 3(f + 3p)bc2

− (18f2 + 3h2 − p2)ab+ 6h(2f − p)ac+ (2f3 + 12fh2 − 10f2p− fp2 − 9h2p)b

+ 6h(f + p)(f − 2p)c,

P13 = −12ab2c− 2a3c− 12ac3 + 12pc3 − 6ha2b+ 2(5f + 9p)a2c+ 3(3f + p)b2c

+ 6h(f − 2p)ab+ (f2 − 3h2 − 18p2)ac+ 6h(f + p)(2f − p)b
+ (2p3 − 9fh2 − f2p− 10fp2 + 12h2p)c,

P22 = −a4 − 15a2b2 − 3a2c2 − 18habc+ (3f + p)a3 + 6(f − 2p)ab2 + 6pac2

− f(2f − 3p)a2 + 3f(3f + 4p)b2 − 3p2c2 + 18hpbc

− (f3−p3−12fh2 +7f2p−3fp2 +12h2p)a+(f −p)(f3 +p3 +9fh2−2fp2 +15h2p),

P23 = −12a2bc− 6(f + p)abc+ 9hab2 − 9hac2 + h(f − p)a2 − 3h(4f − p)b2

− 3h(f − 4p)c2 + 6(f + p)2bc+ 10h(f2 − p2)a− 2h(f − p)(f2 − 8pf + 6h2 + p2),

P33 = −a4 − 3a2b2 − 15a2c2 + 18habc+ (f + 3p)a3 + 6fab2 − 6(2f − p)ac2

+ p(3f − 2p)a2 − 3f2b2 + 3p(4f + 3p)c2 − 18fhbc

+(f3−p3 +3f2p−7fp2−12fh2 +12h2p)a− (f −p)(f3 +p3−2f2p+15fh2 +9h2p),

P44 = a4 + 9a2b2 + 9a2c2 − 3(f + p)a3 − 18fab2 − 18pac2 + (4f2 + 4p2 + fp)a2

+ 9f2b2 + 9p2c2 − (f + p)(3f2 + 3p2 − 4fp)a+ (f − p)2(f2 + 9h2 + p2 − fp) .

Hence, Re4 nR3 admits a Bach-flat left-invariant metric if and only if the struc-
ture constants in Equation (2.21) satisfy the equations {Pij = 0}. We consider
separately the cases a = 0 and a 6= 0.
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Case a = 0

Let I0 ⊂ R[b, f, c, h, p] be the ideal generated by the seven polynomials Pij in
Equation (2.22). We compute a Gröbner basis G0 of I0 with respect to the graded
reverse lexicographical order and get that it contains the polynomial

g0 = p8(f − p)2 .

Since the zero sets of {Pij = 0} and I0 = 〈Pij〉 = 〈G0〉 coincide, we are led to the
following cases:

(1) p = 0, (2) f = p .

Case (1):

a = 0, p = 0. In this case, one checks using Equation (2.22) that

P44 = f2(9b2 + f2 + 9h2)

and therefore necessarily f = 0. Now, a direct calculation shows that, in such a case,
the manifold is Einstein and therefore symmetric [70].

Case (2):

a = 0, f = p. Equation (2.22) implies that

P44 = 9(b2 + c2)p2 .

Since p = 0 corresponds to Case (1), we have b = c = 0 and a direct calculation
shows that the manifold is locally conformally flat and thus symmetric [99].

Case a 6= 0

Taking a 6= 0 in Equation (2.21), we may work with a homothetic basis ẽk = 1
aek so

that we may assume, without loss of generality, a = 1.
Let I ⊂ R[p, f, b, c, h] be the ideal generated by the seven polynomials Pij in

Equation (2.22). Computing a Gröbner basis G of I with respect to the lexicographi-
cal order we find that the following polynomial is in the basis:

g = (f − 1)ch2(24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216)(16h2 + 9)

× (16h2+81)(80h4+95h2+32)(464h4+2175h2+1824)(2116h4+4884h2+1089)

× (49532953600h12 + 100931329200h10 + 67210421265h8 + 16039857600h6

+ 1904414976h4 + 177168384h2 + 11943936)

× (14705175456768h12−11441136851376h10+3165906982755h8

+ 580502490560h6 + 263837594880h4 + 2944180224h2 + 127844352) .
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Note that only the first five factors provide real roots, so we consider the following
cases:

(1) f = 1, (2) c = 0, (3)h = 0,

(4) (24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216) = 0 .

Case (1):

a = 1, f = 1. We compute a Gröbner basis G1 of the ideal generated by G∪{f−1} ⊂
R[p, f, b, c, h] with respect to the lexicographical order, and we get that

g1 = (p− 1)c2 and g′1 = (p− 1)h2

belong to G1. Thus, we have two possibilities:

(1.i) p = 1, (1.ii) c = h = 0 .

Case (1.i): a = 1, f = 1, p = 1. In this case, a direct calculation shows that the
manifold is Einstein and therefore symmetric [70].

Case (1.ii): a = 1, f = 1, c = h = 0. Equation (2.22) implies that

P44 = (p− 1)2p(p− 4) .

Note that p = 1 corresponds to the previous case and for p = 0 a direct calculation
shows that the manifold is locally conformally flat and thus symmetric [99]. Now,
if p = 4, Equation (2.22) shows that the manifold is Bach-flat and, moreover, one
easily checks that it is non-symmetric. This is a particular case of Assertion (ii) in
Lemma 2.14 if b = 0 (taking α = 1 and using the homothetic isomorphism ē1 = e1,
ē2 = e3, ē3 = e2, ē4 = e4). If b 6= 0, it corresponds to Assertion (i) just considering
the homothetic isomorphism e1 = 1

4 e3, e2 = 1
4 e2, e3 = 1

4 e1, e4 = 1
4 e4.

Case (2):

a = 1, c = 0. We consider the ideal generated by G ∪ {c} ⊂ R[p, h, f, b, c] and
compute a Gröbner basis G2 for it with respect to the lexicographical order, obtaining
that the polynomial

g2 = (f − 1)b2(b4 + 90b2 + 81)(5b4 + 5b2 + 2)(25b4 + 2b2 + 1)

×(49b4 +138b2 +9)(725b4 +8613b2 +2850)(2116b4 +4884b2 +1089)
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belongs to G2. Excluding f = 1 solved in Case (1), the only real root for g2 corre-
sponds to the factor b2, so necessarily b = 0.

Next, we compute a new Gröbner basis G′2 for the ideal generated by G2 ∪ {b} ⊂
R[p, f, b, c, h] with respect to the lexicographical order and we find that the polyno-
mials

g′2 = (f − 1)(4f − 1)h2(8h2 − 1)(8h2 + 3)(8h2 + 9),

g′′2 = (f − 1)(4f − 1)h2(320fh4+128h4+320fh2+40f2+152h2−5f+4)

belong to G′2. As a consequence, and since f = 1 was solved in Case (1), one easily
checks that we have two possibilities:

(2.i) f = 1
4 , (2.ii)h = 0 .

Case (2.i): a = 1, c = 0, b = 0, f = 1
4 . Computing a Gröbner basis G21 for the

ideal generated by G′2∪{4f−1} ⊂ R[p, f, b, c, h] with respect to the lexicographical
order we get that the polynomial

g21 = (4p− 1)(4p− 9)

belongs to G21. Now, we have:

• If p = 1
4 , Equation (2.22) implies that the manifold is Bach-flat and, moreover,

one easily checks that it is non-symmetric, corresponding to Assertion (i) in
Lemma 2.14.

• If p = 9
4 , then we use again Equation (2.22) to get that the Bach-flat condition

is equivalent to h = 0 and, in such a case, a direct calculation shows that
the manifold is non-symmetric. This is a particular case of Assertion (ii) in
Lemma 2.14, just taking α = 1

2 and considering the homothetic isomorphism
ē1 = e1, ē2 = e3, ē3 = e2, ē4 = e4.

Case (2.ii): a = 1, c = 0, b = 0, h = 0. We compute a Gröbner basis G22 for
the ideal generated by G′2 ∪ {h} ⊂ R[p, f, b, c, h] with respect to the lexicographical
order and we find that the polynomial

g22 = (f − 1)((f − p)2 − 2f − 2p+ 1)(f2 + f + 1)

belongs to G22. Excluding f = 1 solved in Case (1), it follows that necessarily

f = (1 +
√
p)2 or (2.23)

f = (−1 +
√
p)2 (2.24)
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and Equation (2.22) shows that the manifold is Bach-flat in both cases. Now, we set
p = α2 with f = (1 + α)2 in the first possibility and p = β2 with f = (−1 + β)2 in
the last one. Taking α = −1+β and considering e1 = e1, e2 = e3, e3 = e2, e4 = e4,
we get that the two possibilities are homothetic so we identify both cases. Moreover,
a straightforward calculation shows that if f = 0 or p = 0 the manifold is locally
conformally flat and thus symmetric [99], while it is non-symmetric if f ·p 6= 0. This
last case corresponds to Assertion (ii) in Lemma 2.14.

Case (3):

a = 1, h = 0. We consider the ideal generated by G ∪ {h} ⊂ R[p, f, b, c, h] and
compute a Gröbner basis G3 for it with respect to the lexicographical order, obtaining
that the polynomial

g3 = (f − 1)cb(14c2 + 33)(5c4 − 25c2 + 32)(1421c4 + 28623c2 + 45600)

belongs to G3. Since f = 1 and c = 0 were solved in the previous cases, we get that
necessarily b = 0.

Next, we compute a Gröbner basis G′3 for the ideal generated by G3 ∪ {b} ⊂
R[p, f, b, c, h] with respect to the lexicographical order and the polynomial

g′3 = (f − 1)c2(f − 4)f(c4 + 90c2 + 81)(25c4 + 2c2 + 1)(49c4 + 138c2 + 9)

belongs to G′3. As a consequence, we must consider the following two possibilities:

(3.i) f = 0, (3.ii) f = 4 .

Case (3.i): a = 1, h = 0, b = 0, f = 0. Equation (2.22) implies that the Bach-flat
condition is equivalent to p = 1 and, in that case, a direct calculation shows that the
manifold is locally conformally flat, and thus symmetric [99].

Case (3.ii): a = 1, h = 0, b = 0, f = 4. Assuming c 6= 0, since it was solved in
Case (2), a straightforward calculation using Equation (2.22) shows that the Bach-flat
condition is equivalent to p = 1. Moreover, a direct calculation shows that, in such
a case, the manifold is not symmetric. If one takes e1 = 1

4 e2, e2 = 1
4 e1, e3 = 1

4 e3,
e4 = 1

4 e4, then it corresponds to a homothetic case of Assertion (i) in Lemma 2.14.

Case (4):

a = 1, (24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216) = 0. In this last
case, it is hard to get a good Gröbner basis if we use G as the starting point as in the
previous cases. Instead, we analyze in detail the polynomials in G (39 specifically)
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and we find that excluding the factors previously solved (i.e., factors involving f −1,
c and h), just one of those polynomials depends only on c and h and has the form

g4 = (f − 1)ch2Q(c, h)

where Q(c, h) = δc4 + S(h)c2 + T (h), with δ > 0 and where S(h), T (h) are
polynomials with only even powers of h.

In the last step, we use the polynomial Q(c, h) to compute a Gröbner basis G4 of
the ideal generated by

Q(c, h) ∪ {(24h6 + 69h4 − 12h2 − 8)(128h6 + 63h4 − 324h2 − 216)} ⊂ R[c, h]

with respect to the graded reverse lexicographical order and we find that

g′4 = 9408954328h8+3490462417c4h4+8504049964c2h6+631105440c6

+48352913472h6+4976629248c4h2+38523345312c2h4+5583229368c4

+72029134968h4+37011199020c2h2+10563992784c2+38487215664h2

+5890415904

belongs to G4. Therefore we conclude that there is no solution in this case, finishing
the proof.

2.7 Left-invariant metrics on ˜SL(2,R)× R and SU(2)× R

Let g = g3 × R be a direct extension of the unimodular Lie algebra g3 = sl(2,R) or
g3 = su(2). Let 〈·, ·〉 be an inner product on g and let 〈·, ·〉3 denote its restriction to
g3. Following the work of Milnor [82], there exists an orthonormal basis {v1,v2,v3}
of g3 such that

[v2,v3] = λ1v1, [v3,v1] = λ2v2, [v1,v2] = λ3v3, (2.25)

where λ1, λ2, λ3 ∈ R and λ1λ2λ3 6= 0. Moreover, the associated Lie group cor-
responds to SU(2) (resp. SL(2,R)) if λ1, λ2, λ3 are all positive (resp. if any of
λ1, λ2, λ3 is negative).

Let {v1,v2,v3,v4} be a basis of g such that {v1,v2,v3} are given by Equa-
tion (2.25) and g = g3 ⊕ Rv4. Since Rv4 needs not to be orthogonal to g3, set
ki = 〈vi,v4〉, for i = 1, 2, 3. Let ê4 = v4 −

∑
i kivi and normalize it to get an

orthonormal basis {e1, . . . , e4} of g = g3 ⊕ R so that

[e1, e2] = λ3e3, [e2, e3] = λ1e1,

[e3, e1] = λ2e2, [e1, e4] = 1
R(k3λ2e2 − k2λ3e3),

[e2, e4] = 1
R(k1λ3e3 − k3λ1e1), [e3, e4] = 1

R(k2λ1e1 − k1λ2e2),

(2.26)
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where R > 0.

Lemma 2.15. The Lie groups ˜SL(2,R)× R and SU(2)× R do not admit any non-
symmetric Bach-flat left-invariant metric.

Proof. Since the structure constants of g3 satisfy λ1λ2λ3 6= 0, one may work with a
homothetic basis ẽk = 1

λ1
ek so that we may assume λ1 = 1. A long but straightfor-

ward calculation shows that the components of the Bach tensor of ˜SL(2,R) × R or
SU(2)× R, with the structure constants in Equation (2.26), are given by

B11 = 1
24R4P11, B12 = 1

12R4P12, B13 = 1
12R4P13, B14 = 1

12R3P14,

B22 = 1
24R4P22, B23 = 1

12R4P23, B24 = 1
12R3P24, B33 = 1

24R4P33,

B34 = 1
12R3P34, B44 = 1

24R4P44,

(2.27)

where the polynomials Pij’s correspond to:

P11 = −4(λ2 − λ3)2(λ22 + λ23 + λ2λ3)k41

+ 4(3λ43 − λ33 + 3λ3 − 5)k42

+ 4(3λ42 − λ32 + 3λ2 − 5)k43

− (((λ3 − 4)λ3 + 24)λ22 − (8λ23 + 4λ3 + 3)λ23 + 2(2λ23 + λ3 − 6)λ2λ3)k21k
2
2

+ (8λ42 − 4(λ3 − 1)λ32 − (λ3 − 1)(λ3 + 3)λ22 − 24λ23 + 4(λ3 + 3)λ2λ3)k21k
2
3

+ ((4(6λ3 − 1)λ3 + 1)λ22 − 2(2λ23 + λ3 − 6)λ2 + (λ3 + 12)λ3 − 40)k22k
2
3

+R2(λ2 − λ3)2(8λ22 + 8λ23 + (8λ3 + 4)λ2 + 4λ3 + 3)k21

−R2(λ3 − 1)((3λ3 + 1)λ22 + 4((3λ3 + 2)λ3 + 3)λ2 − 8(((3λ3 + 2)λ3 + 2)λ3 + 5))k22

−R2(λ2 − 1)((3λ2 + 1)λ23 + 4((3λ2 + 2)λ2 + 3)λ3 − 8(((3λ2 + 2)λ2 + 2)λ2 + 5))k23

+ 4R4(3λ42− (3λ3 + 1)λ32 + (3λ3−1)λ33 +λ22λ3 + ((−3λ23 +λ3−1)λ3 + 3)λ2 + 3λ3−5),

P12 = (λ2 − λ23)((8λ2 + 5)λ2 + 8)k1k2k
2
3

− (8λ43 − 8λ32 − (λ3 − 4)λ22λ3 − (4λ3 − 1)λ2λ
2
3)k31k2

− (8λ43 − 4λ33 − λ23 + (λ3 + 4)λ2λ3 − 8λ2)k1k
3
2

−R2(8λ43−4(λ2+1)λ33−((λ2−3)λ2+1)λ23+10(λ2+1)λ2λ3−((8λ2+5)λ2+8)λ2)k1k2,

P13 = −(λ22 − λ3)((8λ3 + 5)λ3 + 8)k1k
2
2k3

− (8λ42 − 8λ33 − (4λ2 − 1)λ22λ3 − (λ2 − 4)λ2λ
2
3)k31k3

+ (8λ3 − (8λ32 − 4λ22 + λ2λ3 − λ2 + 4λ3)λ2)k1k
3
3

−R2(8λ42−4(λ3+1)λ32−((λ3−3)λ3+1)λ22+10(λ3+1)λ2λ3−((8λ3+5)λ3+8)λ3)k1k3,

P14 = −8(λ2 − λ3)2(λ22 + λ23 + λ3λ2)k31

− (8λ43 − 4(λ2 + 1)λ33 − (λ2 − 1)2λ23 + 8λ22 − 4(λ2 + 1)λ2λ3)k1k
2
2
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− (8λ42 − 4(λ3 + 1)λ32 − (λ3 − 1)2λ22 + 8λ23 − 4(λ3 + 1)λ2λ3)k1k
2
3

−R2(λ2 − λ3)2(8λ22 + 8λ23 + (8λ3 − 4)λ2 − 4λ3 − 1)k1,

P22 = −4(5λ42 − 3λ43 − 3λ32λ3 + λ2λ
3
3)k41

− 4(λ43 − λ33 − λ3 + 1)k42

− 4(5λ42 − 3λ32 + λ2 − 3)k43

+ (3((λ3 + 4)λ3 − 8)λ22 + (8λ23 − 4λ3 − 1)λ23 + 2((2λ3 − 1)λ3 + 2)λ2λ3)k21k
2
2

− (40λ42 − 12(λ3 + 1)λ32 − (λ3 − 1)2λ22 − 24λ23 + 4(λ3 + 1)λ2λ3)k21k
2
3

− (3(8λ23 − 4λ3 − 1)λ22 − (4λ23 − 2λ3 + 4)λ2 + (λ3 + 4)λ3 − 8)k22k
2
3

−R2(40λ42−12(2λ3+1)λ32+(4λ3−1)λ22−3(8λ23−4λ3−1)λ23−2(−4λ23+2λ3+1)λ2λ3)k21

+R2(λ3 − 1)2(3λ22 + 4(λ3 + 1)λ2 + 8(λ23 + λ3 + 1))k22

+R2(λ2 − 1)((λ2 + 3)λ23 + 4((3λ2 + 2)λ2 + 3)λ3 − 8((λ2(5λ2 + 2) + 2)λ2 + 3))k23

− 4R4(5λ42 − 3(λ3 + 1)λ32 + λ22λ3 + (λ3 − 1)2(λ3 + 1)λ2 − 3(λ43 − λ33 − λ3 + 1)),

P23 = (λ2λ3 − 1)(8λ22 + 8λ23 + 5λ2λ3)k21k2k3

+ ((λ3 + (8λ23 − 4λ3 − 1)λ2 + 4)λ3 − 8)k32k3

+ (((8λ2 − 4)λ2λ3 + λ2 − λ3 + 4)λ2 − 8)k2k
3
3

+R2(8λ32λ3 +(5(λ3−2)λ3 +1)λ22 +((2λ3−3)(4λ3 +1)λ3 +4)λ2 +(λ3 +4)λ3−8)k2k3,

P24 = −8(λ43 − λ33 − λ3 + 1)k32

− (8λ43 − 4(λ2 + 1)λ33 + 8λ22 − (λ2 − 1)2λ23 − 4(λ2 + 1)λ2λ3)k21k2

− ((8λ23 − 4λ3 − 1)λ22 − (4λ23 − 2λ3 + 4)λ2 − (λ3 + 4)λ3 + 8)k2k
2
3

+R2(λ3 − 1)2(λ22 + 4(λ3 + 1)λ2 − 8(λ23 + λ3 + 1))k2,

P33 = 4(3λ42 − 5λ43 − λ32λ3 + 3λ2λ
3
3)k41

− 4(5λ43 − 3λ33 + λ3 − 3)k42

− 4(λ42 − λ32 − λ2 + 1)k43

− (40λ43 − 12(λ2 + 1)λ33 − 24λ22 − (λ2 − 1)2λ23 + 4(λ2 + 1)λ2λ3)k21k
2
2

+ (8λ42 + 4(λ3 − 1)λ32 + (λ3 − 1)(3λ3 + 1)λ22 − 24λ23 + 4(3λ3 + 1)λ2λ3)k21k
2
3

− ((4(6λ3 − 1)λ3 + 1)λ22 − 2(2λ3 + 1)(3λ3 − 2)λ2 − (3λ3 + 4)λ3 − 8)k22k
2
3

+R2(24λ42−40λ43−4(2λ3+3)λ32+12λ33+(4λ3−3)λ22+λ23+2(2(6λ3−1)λ3+1)λ2λ3)k21

+R2(λ3 − 1)((λ3 + 3)λ22 + 4((3λ3 + 2)λ3 + 3)λ2 − 8(((5λ3 + 2)λ3 + 2)λ3 + 3))k22

+R2(λ2 − 1)2(8λ22 + 4(λ3 + 2)λ2 + (3λ3 + 4)λ3 + 8)k23

− 4R4(5λ43 − 3(λ2 + 1)λ33 + λ2λ
2
3 + (λ2 − 1)2(λ2 + 1)λ3 − 3(λ2 − 1)2(λ22 + λ2 + 1)),

P34 = −8(λ42 − λ32 − λ2 + 1)k33

− (8λ42 − 4(λ3 + 1)λ32 − (λ3 − 1)2λ22 + 8λ23 − 4(λ3 + 1)λ2λ3)k21k3
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− ((8λ23 − 4λ3 − 1)λ22 − (4λ23 − 2λ3 + 4)λ2 − (λ3 + 4)λ3 + 8)k22k3

−R2(λ2 − 1)2(8λ22 − 4(λ3 − 2)λ2 − (λ3 + 4)λ3 + 8)k3,

P44 = 12(λ2 − λ3)2(λ22 + λ23 + λ3λ2)k41

+ 12(λ3 − 1)2(λ23 + λ3 + 1)k42

+ 12(λ2 − 1)2(λ22 + λ2 + 1)k43

+ 3(8λ43 − 4(λ2 + 1)λ33 + 8λ22 − (λ2 − 1)2λ23 − 4(λ2 + 1)λ2λ3)k21k
2
2

+ 3(8λ42 − 4(λ3 + 1)λ32 − (λ3 − 1)2λ22 + 8λ23 − 4(λ3 + 1)λ2λ3)k21k
2
3

+ 3((8λ23 − 4λ3 − 1)λ22 − 2(2λ23 − λ3 + 2)λ2 − (λ3 + 4)λ3 + 8)k22k
2
3

+R2(λ2 − λ3)2(8λ22 + 8λ23 + (8λ3 − 4)λ2 − 4λ3 − 1)k21

−R2(λ3 − 1)2(λ22 + 4(λ3 + 1)λ2 − 8(λ23 + λ3 + 1))k22

+R2(λ2 − 1)2(8λ22 − 4(λ3 − 2)λ2 − (λ3 + 4)λ3 + 8)k23

− 4R4(λ42 − (λ3 + 1)λ32 + λ22λ3 − (λ3 − 1)2(λ3 + 1)λ2 + (λ3 − 1)2(λ23 + λ3 + 1)) .

Therefore, ˜SL(2,R)×R or SU(2)×R admit a Bach-flat left-invariant metric if
and only if the structure constants in Equation (2.26) satisfy the equations {Pij = 0}.
Let I ⊂ R[λ2, λ3, k1, k2, k3, R] be the ideal generated by the polynomials Pij . We
compute a Gröbner basis G of I with respect to the graded reverse lexicographical
order. A detailed analysis of the Gröbner basis shows that the polynomial

g0 = (λ2 − λ3)k1k
2
2k

2
3(k2

2 + k2
3 +R2)(k2

1 + k2
2 + k2

3 +R2) (2.28)

belongs to the basis. Since the zero sets of {Pij = 0} and I = 〈Pij〉 = 〈G〉 coincide,
we are led to the following cases:

(1)λ2 = λ3, (2) k1 = 0, (3) k2 = 0, (4) k3 = 0 .

Case (1):

λ2 = λ3. A direct calculation using Equation (2.27) implies that

P14 = −3(λ3 − 1)2k1(k2
2 + k2

3)λ2
3

and therefore we have the following possibilities:

(1.i)λ3 = 1, (1.ii) k1 = 0, (1.iii) k2 = k3 = 0 .

Case (1.i):

λ2 = λ3, λ3 = 1. In this case we have λ1 = λ2 = λ3 = 1 and a direct calcu-
lation shows that the corresponding Lie group given by Equation (2.26) is locally
conformally flat, and thus a symmetric manifold [99].
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Case (1.ii):

λ2 = λ3, k1 = 0. Computing a Gröbner basis of the ideal generated by G ∪ {λ2 −
λ3, k1} with respect to the graded reverse lexicographical order, we find that the
polynomial

g12 = (λ3 − 1)(k2
2 + k2

3 +R2)3R2

belongs to the ideal, leading to the solution λ3 = 1 in Case (1.i).

Case (1.iii):

λ2 = λ3, k2 = k3 = 0. A direct calculation using Equation (2.27) shows that

P44 = −4(λ3 − 1)2R4

and thus λ3 = 1, which corresponds to Case (1.i).

Case (2):

k1 = 0. Computing a Gröbner basis G2 of the ideal generated by G ∪ {k1} with
respect to the graded reverse lexicographical order, one has that the polynomial

g2 = k2k3(λ2 − λ3)(k2
3 + 2R2)(k2

2 + k2
3 +R2)2

belongs to the basis. Since λ2 = λ3 was solved in Case (1), we have the following
possibilities:

(2.i) k2 = 0, (2.ii) k3 = 0 .

Case (2.i):

k1 = 0, k2 = 0. We compute a Gröbner basis G21 of the ideal generated by G2∪{k2}
with respect to the lexicographical order and we obtain that the polynomial (λ3 −
1)2λ4

3R
6 belongs to the basis. Since λ3 6= 0 the only possible solution is λ3 = 1.

Now, computing a new Gröbner basis G′21 of the ideal generated by G21 ∪ {λ3 − 1}
with respect to the graded reverse lexicographical order we find that the polynomial
(λ2 − 1)λ2

2R
4 belongs to the basis. Thus we get the solution λ2 = λ3 = 1 which

corresponds to Case (1.i).

Case (2.ii):

k1 = 0, k3 = 0. Considering the ideal G2∪{k3} and computing a Gröbner basis with
respect to the lexicographical order, we find that the polynomial k2(λ3 − 1)2(k2

2 +
R2)3 belongs to the basis. Since k2 = 0 was treated in the previous case, we have
λ3 = 1, which together with k1 = k3 = 0 let us to get P44 = −4(λ2−1)2λ2

2R
4 from

Equation (2.27). Hence, necessarily λ2 = λ3 = 1 and we are again in Case (1.i).
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Case (3):

k2 = 0. Computing a Gröbner basis G3 of the ideal generated by G ∪ {k2} with
respect to the graded reverse lexicographical order, we find that the polynomial

g3 = (λ2 − 1)(λ3 − 1)k3(k2
3 +R2)2(k2

1 + k2
3 +R2)R2

belongs to the basis. Therefore we consider the following possibilities:

(3.i)λ2 = 1, (3.ii)λ3 = 1, (3.iii) k3 = 0 .

Case (3.i):

k2 = 0, λ2 = 1. Adding the polynomial λ2 − 1 to G3 and computing a Gröbner
basis with respect to the lexicographical order, we find that the polynomial (λ3 −
1)k2

1(3k2
3 + R2)R2 belongs to the basis. Therefore, we are led to the previously

considered Case (1) or Case (2).

Case (3.ii):

k2 = 0, λ3 = 1. Adding the polynomial λ3− 1 to G3 and computing a Gröbner basis
with respect to the lexicographical order, we find that the polynomial (λ2 − 1)k1R

4

belongs to the basis. Therefore, we are led to the previously considered Case (1) or
Case (2).

Case (3.iii):

k2 = 0, k3 = 0. Adding the polynomial k3 to G3 and computing a Gröbner basis
with respect to the lexicographical order, we find in this case that the polynomial
(λ3 − 1)2λ2

3R
6 belongs to the basis. This leads to Case (3.ii).

Case (4):

k3 = 0. Computing a Gröbner basis G4 of the ideal generated by G ∪ {k3} with
respect to the graded reverse lexicographical order, we find that the polynomial

g4 = k1k2(λ3 − 1)(k2
2 +R2)2(k2

1 + k2
2 +R2)(k2

1 + k2
2 + 4R2)R2

belongs to the basis. Since the cases k1 = 0 and k2 = 0 were already considered,
one necessarily has λ3 = 1. Using Equation (2.27), since k3 = 0 and λ3 = 1 we get
P24 = −3k2

1k2(λ2 − 1)2. Therefore, λ2 = 1 = λ3 and this leads again to Case (1),
finishing the proof.
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2.8 Conformally Einstein four-dimensional Lie groups

The purpose of this section is to complete the proof of Theorem 2.1 based on the
analysis in sections 2.4–2.7.

Proof of Assertion (i) in Theorem 2.1. We consider the different Lie groups given by
Lemma 2.14. Let 〈 · , · 〉 be the left-invariant metric determined by Lemma 2.14–(i).
Considering the homothetic metric 〈 · , · 〉∗ = 27

8 〈 · , · 〉, the Ricci operator of 〈 · , · 〉∗
takes the form Ric = −1

9 diag[4, 1, 1, 3] in the basis {e1, . . . , e4}. Moreover, the self-
dual and anti-self-dual Weyl curvature operators become W± = 1

27 diag[1, 1,−2]
in the induced basis of self-dual and anti-self-dual two-forms. The expressions of
W± show that the Weyl curvature operator has maximal rank. Hence, the necessary
condition in Theorem 1.14–(ii) to be conformally Einstein is also sufficient. Let
T ∈ g be an arbitrary vector and set T =

∑
k Tkek. A straightforward calculation

shows that (div4W )(ei, ej , ek)−W (ei, ej , ek,T) = 0 if and only if T = −2
9 e4. This

shows that left-invariant metrics given by Lemma 2.14–(i) are conformally Einstein.
Now, denoting by Wij the Weyl endomorphism given by W (ei, ej), the non-zero

components of the Weyl tensor of type (1,3) are given by:

W12 =


0 1

8 0 0

−1
8 0 0 0

0 0 0 0

0 0 0 0

 , W13 =


0 0 1

8 0

0 0 0 0

−1
8 0 0 0

0 0 0 0

 ,

W14 =


0 0 0 −1

4

0 0 0 0

0 0 0 0
1
4 0 0 0

 , W23 =


0 0 0 0

0 0 −1
4 0

0 1
4 0 0

0 0 0 0

 ,

W24 =


0 0 0 0

0 0 0 1
8

0 0 0 0

0 −1
8 0 0

 , W34 =


0 0 0 0

0 0 0 0

0 0 0 1
8

0 0 −1
8 0

 .

Since the Weyl tensor of type (1,3) does not depend on α, then it now follows from
the work of Hall [63] that all the left-invariant metrics in Lemma 2.14–(i) are homo-
thetic (but not necessarily isomorphic). This completes the proof of Assertion (i) in
Theorem 2.1.
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Proof of Assertion (ii) in Theorem 2.1. Let (Gα, 〈 · , · 〉) be a half conformally flat
Lie group given by Lemma 2.13–(i) (see also Theorem 1.30). Following [47], let
{ek} denote the dual basis of {ek} so that the structure equations are given by

de4 = 0, de1 = e1 ∧ e4 + αe2 ∧ e4,

de2 = −αe1 ∧ e4 + e2 ∧ e4, de3 = 2e3 ∧ e4 − e1 ∧ e2 .
(2.29)

Integrating the expressions above gives coordinates (x, y, z, t) on R4 where (see [47])

e1 = e−t(dx+ αydt), e2 = e−t(dy − αxdt),

e3 = −e−2t
(
dz + 1

2(xdy − ydx)− 1
2α(x2 + y2)dt

)
, e4 = dt,

so that the metric expresses as

gα = e−2t(dx+ αydt)2 + e−2t(dy − αxdt)2

+ e−4t(dz + 1
2(xdy − ydx)− 1

2α(x2 + y2)dt)2 + dt2 .
(2.30)

Now, a straightforward calculation shows that the conformal metric g̃α = e3tgα is
Ricci-flat, and thus (Gα, 〈 · , · 〉) is conformally Einstein. This proves Assertion (ii)
in Theorem 2.1.

Proof of Assertion (iii) in Theorem 2.1. Let (gα, 〈 · , · 〉α) be a Lie algebra given by
Lemma 2.14–(ii), and set

[e4, e1] = e1, [e4, e2] = (α+ 1)2e2, [e4, e3] = α2e3, α > 0,

where {e1, . . . , e4} is an orthonormal basis.
Considering the homothetic metric 〈 · , · 〉∗α = 6(α2 + α + 1)2〈 · , · 〉α, the Ricci

operator of 〈 · , · 〉∗ and the self-dual and anti-self-dual Weyl curvature operators take
the forms

Ricα = − 1
3(α2+α+1)

diag[1, (α+ 1)2, α2, α2 + α+ 1],

W+
α = α(α+1)

6(α2+α+1)2
diag[α,−(α+ 1), 1] = W−α ,

(2.31)

when expressed in the 〈 · , · 〉∗α-orthogonal basis {e1, . . . , e4} and the induced basis
of two-forms. Therefore W±α has three-distinct eigenvalues unless α = 1.

The necessary condition in Theorem 1.14–(ii) to be conformally Einstein is also
sufficient in this case since by Equation (2.31) the Weyl tensor has maximal rank.
Let T ∈ gα be an arbitrary vector and set T =

∑
k Tkek. A straightforward cal-

culation shows that (div4W )(ei, ej , ek) −W (ei, ej , ek,T) = 0 if and only if T =
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− 1
6(α2+α+1)

e4. This shows that left-invariant metrics given by Lemma 2.14–(ii) are
conformally Einstein.

In the special case α = 1, one has that Ric = −1
9 diag[1, 4, 1, 3], W+ = W− =

1
27 diag[1,−2, 1] and considering a new basis ē1 = 1

4e2, ē2 = 1
4e1, ē3 = 1

4e3,
ē4 = 1

4e4, the non-zero components of the Weyl tensor of type (1,3) are given by:

W12 =


0 1

8 0 0

−1
8 0 0 0

0 0 0 0

0 0 0 0

 , W13 =


0 0 1

8 0

0 0 0 0

−1
8 0 0 0

0 0 0 0

 ,

W14 =


0 0 0 −1

4

0 0 0 0

0 0 0 0
1
4 0 0 0

 , W23 =


0 0 0 0

0 0 −1
4 0

0 1
4 0 0

0 0 0 0

 ,

W24 =


0 0 0 0

0 0 0 1
8

0 0 0 0

0 −1
8 0 0

 , W34 =


0 0 0 0

0 0 0 0

0 0 0 1
8

0 0 −1
8 0

 .

Now, it follows from the work of Hall [63] that the left-invariant metric for α = 1 is
homothetic to left-invariant metrics in Lemma 2.14–(i). Hence we assume α 6= 1.

Furthermore, replacing α by α−1 in Equation (2.31) one has that e1 7→ e3 de-
fines an orientation reversing homothety between the left-invariant metrics 〈 · , · 〉α
and 〈 · , · 〉α−1 . We therefore may assume α > 1. Considering the homothetic met-
ric 〈 · , · 〉∗α, a straightforward calculation shows that τα = −1 and ‖ρα‖2 = 1

3 .

Moreover, the norm of the Weyl tensor satisfies ‖Wα‖2 = 4α2(α+1)2

9(α2+α+1)3
. Hence

two metrics 〈 · , · 〉α and 〈 · , · 〉β with α, β ∈ (1,+∞) are homothetic if and only
if α2(α+ 1)2(β2 + β + 1)3 = β2(β + 1)2(α2 + α+ 1)3, and thus α = β.

2.9 Strictly Bach-flat four-dimensional Lie groups

The purpose of this section is to complete the proof of Theorem 2.4 based on the
analysis in sections 2.4–2.7.

Proof of Theorem 2.4. Let us consider the left-invariant metric on Re4 n E(1, 1)
given in Lemma 2.12. The Lie brackets are given, with respect to an orthonormal
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basis {e1, . . . , e4}, by

[e1, e3] = (2 +
√

3)e2, [e2, e3] = e1,

[e4, e1] =
√

6 + 3
√

3e1, [e4, e2] =
√

6 + 3
√

3e2 .

Now, an explicit calculation shows that the Ricci operator, in the basis {e1, . . . , e4},
takes the form Ric = −(2 +

√
3) diag[6 +

√
3, 6−

√
3, 3, 6].

Let {E±i } be the corresponding orthonormal basis of self-dual and anti-self-dual
two-forms given by E±1 = 1√

2

(
e1 ∧ e2 ± e3 ∧ e4

)
, E±2 = 1√

2

(
e1 ∧ e3 ∓ e2 ∧ e4

)
,

and E±3 = 1√
2

(
e1 ∧ e4 ± e2 ∧ e3

)
. Then, the self-dual and anti-self-dual Weyl cur-

vature operators are given by

W+ = 2+
√

3
2 diag[2,−1− 3

√
2−
√

3,−1 + 3
√

2 +
√

3],

W− = 2+
√

3
2 diag[2,−1 + 3

√
2−
√

3,−1− 3
√

2 +
√

3] .

Finally, observe that the metric in Lemma 2.12 is not conformally Einstein. In-
deed, considering the corresponding left-invariant metric 〈·, ·〉, a straightforward cal-
culation shows that, for any vector T ∈ g, the necessary condition in Theorem 1.14–
(ii) gives

(div4W )(e1, e2, e3)−W (e1, e2, e3,T) =
3

2
(5 + 3

√
3) 6= 0,

and thus (G, 〈 · , · 〉) is strictly Bach-flat.

Consider the left-invariant metrics on Re4 n H3 at Lemma 2.13–(ii). The Lie
brackets are given, with respect to an orthonormal basis {e1, . . . , e4}, by

[e1, e2] = e3, [e3, e4] =
√

5
2
√

2
e3,

[e4, e1] = 1
4

√
7− 3

√
5e1, [e2, e4] = 1

4

√
7 + 3

√
5e2 .

Now, a explicit calculation shows that the Ricci operator, in the basis {e1, . . . , e4},
takes the form Ric = −3

8 diag[3−
√

5, 3 +
√

5, 2, 4], and the self-dual and anti-self-
dual Weyl curvature operators are given by

W+ = −1
8 diag[2 +

√
10,−1−

√
7 + 3

√
5,−1 +

√
7− 3

√
5],

W− = −1
8 diag[2−

√
10,−1 +

√
7 + 3

√
5,−1−

√
7− 3

√
5] .

In order to show that the left-invariant metrics in Lemma 2.13–(ii) are strictly
Bach-flat, we consider the necessary condition in Theorem 1.14–(ii) to be confor-
mally Einstein. Let T ∈ g be an arbitrary vector and set T =

∑
k Tkek. Then one
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2.10 Bach-flat homogeneous Ricci solitons

has

(div4W )(e1, e2, e3)−W (e1, e2, e3,T) = 1
16(3 + 2

√
10T4),

(div4W )(e1, e4, e1)−W (e1, e4, e1,T) = − 1
32(3

√
3−
√

5 + 4T4),

which are not compatible and thus the Lie group is strictly Bach-flat.

2.10 Bach-flat homogeneous Ricci solitons

Recall from Section 1.8 that Ricci solitons are self-similar solutions of the Ricci flow
∂
∂tg(t) = −2ρg(t), i.e., they are fixed points of the flow up to diffeomorphisms and
rescaling. On a Lie group one may consider a stronger condition and search for fixed
points of the flow up to automorphisms of the Lie group instead of diffeomorphisms.
This observation led Lauret [76] to introduce algebraic Ricci solitons as follows. Let
G be a Lie group with Lie algebra g. A left-invariant metric 〈 · , · 〉 on G is called an
algebraic Ricci soliton if

D = Ric−λ Id (2.32)

is a derivation of the Lie algebra, i.e., D[X,Y ] = [DX,Y ] + [X,DY ] for all X,Y ∈
g, where Ric denotes the Ricci operator 〈Ric(X), Y 〉 = ρ(X,Y ) and λ ∈ R. Let D
be a derivation given by Equation (2.32) and let ϕt denote the one-parameter family
of automorphisms determined by dϕt|e = exp t

2D. Then the vector field X given
by X(p) = d

dtϕt(p)|t=0 satisfies Equation (1.24), thus defining a Ricci soliton on
G. It is important to recognize that both Equations (1.24) and (2.32) are invariant by
homotheties. Hence, aimed to characterize Bach-flat homogeneous Ricci solitons we
shall work modulo homotheties.

Let ∆Xu = ∆u − g(X,∇u) be the X-Laplacian on a Ricci soliton structure
(M, g,X) (see for example [37]). Then 1

2∆Xτ = λτ − ‖Ric ‖2, which shows that
a steady Ricci soliton (λ = 0) with constant scalar curvature is Ricci-flat, and hence
flat in the homogeneous setting (see [3] and [98] for an extension to the locally ho-
mogeneous setting). Furthermore, four-dimensional homogeneous shrinking Ricci
solitons have bounded curvature and thus they are gradient [84]. Hence, (M, g) is
rigid, i.e., it splits as a product N × Rk where N is Einstein and the potential func-
tion is given by the projection into the Euclidean factor [93]. Every homogeneous
expanding Ricci soliton is necessarily non-compact, and all known non-gradient ex-
amples are algebraic Ricci solitons on manifolds isometric to solvable Lie groups
with left-invariant metrics [67].

The following result describes all homogeneous Bach-flat Ricci solitons.

Theorem 2.16. Let (M, g) be a four-dimensional complete and simply connected
Bach-flat Riemannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally
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conformally flat gradient Ricci soliton N3(c) × R, where N3(c) is a space form, or
homothetic to one of the algebraic Ricci solitons determined by the following solvable
Lie algebras:

(i) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) The Lie algebra gα = Re4 n r3 given by

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) The Lie algebra g = Re4 n h3 given by

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Proof. Let (M, g) be a homogeneous Ricci soliton, i.e., LXg + ρ = λg. If λ = 0,
then (M, g) is flat. Moreover, if λ > 0, then X is the gradient of a potential function
and one has Hesf +ρ = λg. Homogeneity now means that either f is constant or
otherwise ∇f is a parallel vector field [93]. Hence (M, g) is Einstein or it splits as a
product N × Rk where N is Einstein. Since dim(N) ≤ 3, it is of constant sectional
curvature and thus N ×Rk is locally symmetric. Now Lemma 2.8 shows that (M, g)
is Bach-flat if and only if it is either Einstein or M = N3(c)× R. Next we consider
the expanding case (λ < 0).

First of all observe that all the homogeneous Bach-flat metrics in Theorem 2.1
and Theorem 2.4 are realized on solvable Lie groups. It was shown by Jablonski [68]
that if a solvmanifold is a Ricci soliton, then it is isometric to a solvsoliton. Hence in
what follows we examine the existence of solutions to Equation (2.32) within the Lie
algebras in Theorem 2.1 and Theorem 2.4.

A straightforward calculation shows that half conformally flat Lie groups in The-
orem 2.1–(ii) are not algebraic Ricci solitons. Indeed, if D = Ric−λ Id is a deriva-
tion then λ should satisfy the equations λ+ 6 = 0 and λ+ 3

2 = 0 which are incom-
patible.

Let gα be a Lie algebra as in Theorem 2.1–(i). Then a straightforward calculation
shows that D = Ric +9

8 Id is a derivation and thus it defines an algebraic Ricci soli-
ton. Analogously, Lie algebras gα in Theorem 2.1–(iii) are algebraic Ricci solitons,
just considering the derivation D = Ric +2(α2 + α+ 1)2 Id.

The Lie algebra corresponding to Theorem 2.4–(i) is not an algebraic Ricci soli-
ton since λ should satisfy the incompatible equations λ−

√
3 = 0 and λ+12+7

√
3 =

0. On the contrary the Lie algebra g = Re4 n h3 given at Theorem 2.4–(ii) is an al-
gebraic Ricci soliton, with D = Ric +3

2 Id.
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Chapter 3

Conformally Einstein non-reductive
homogeneous manifolds

The purpose of this chapter is to analyze the conformally Einstein equation for a
class of strictly pseudo-Riemannian four-dimensional homogeneous spaces, namely
the non-reductive ones. We determine explicitly which non-reductive homogeneous
four-manifolds are conformally Einstein and give all the possible conformally Ein-
stein metrics in each case. It is worth remarking that all Einstein metrics inside each
conformal class are Ricci-flat and, moreover, they are not unique depending on the
cases, allowing the existence of two-parameter and three-parameter families of Ricci-
flat conformal metrics in some cases.

It is important to emphasize that although any locally conformally Einstein metric
is Bach-flat, there are examples of strictly Bach-flat manifolds, i.e., which are neither
half conformally flat nor locally conformally Einstein (see for example [1,33,78] and
the references therein). In this chapter we report on work investigated in [32]. Now,
our main result can be stated as follows.

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.

(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.
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Non-reductive homogeneous manifolds

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary
constants with ab 6= 0 and b 6= −q, or

(R4, g−) with metric given by

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

This chapter is organized as follows. The classification of the non-reductive four-
dimensional homogeneous spaces given in [54] and the local form of the metrics
corresponding to the different classes obtained in [25] are briefly reviewed in Sec-
tion 3.1. The classification of all Bach-flat non-reductive four-dimensional homoge-
neous spaces is given in Theorem 3.9. The conformally Einstein equation is treated
in Section 3.3 where Theorem 3.1 is stated, classifying the conformally Einstein non-
reductive four-dimensional homogeneous spaces. All the curvature calculations are
carried out in Section 3.2, while the proof of Theorem 3.1 is given in Section 3.3.

3.1 Classification of four-dimensional non-reductive homo-
geneous manifolds

We recall that a pseudo-Riemannian manifold is homogeneous if there is a group of
isometries which acts transitively on M . Let G be such a group of isometries and let
H denote the isotropy group at some fixed point. Then (M, g) can be identified with
the quotient space (G/H, g̃), where g̃ is an invariant metric on G. A homogeneous
space G/H is said to be reductive if the associated Lie algebra admits a decomposi-
tion of the form g = h⊕m where m is an Ad(H)-invariant complement of h. While
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

every Riemannian homogeneous space is reductive, there are pseudo-Riemannian ho-
mogeneous spaces without any reductive decomposition. The geometry of reductive
pseudo-Riemannian manifolds presents some similarities with the Riemannian case
(see for example [57]), but little is known about the non-reductive case. The geome-
try of non-reductive homogeneous spaces is therefore an important aspect towards a
good understanding of pseudo-Riemannian homogeneous manifolds.

Recall that any homogeneous pseudo-Riemannian manifold is reductive in di-
mension two and three. So the first non-trivial examples appear in dimension four.
Both Lorentzian and neutral signature examples may occur. In dimension four, a
complete classification of non-reductive homogeneous spaces was obtained in [54]
(see Section 3.1.1). Later on a coordinate description was given in [25] which we
recall in order to state our results.

3.1.1 Classification of Fels and Renner

We consider M = G/H and denote by (g, h) the pair of Lie algebras corresponding
to G and H , respectively. The Lie algebras in dimension ≤ 4 were classified in [91].
Following the same notation we introduce the relevant Lie algebras for our purpose.

• A1
4,9 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e3 .

• A5,30 is the solvable Lie algebra determined by:

[e2, e4] = e1, [e3, e4] = e2, [e1, e5] = (α+ 1)e1,

[e2, e5] = αe2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

with α ∈ R.

• A5,36 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2,

[e2, e5] = −e2, [e3, e5] = e3 .

• A5,37 is the solvable Lie algebra determined by:

[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2,

[e3, e4] = e3, [e2, e5] = −e3, [e3, e5] = e2 .

Now, we provide a classification when the signature is Lorentzian.

Theorem 3.2. [54] Let (M = G/H, g) be a four-dimensional homogeneous Lorentz-
ian manifold, where H is connected. If M is non-reductive then the pair (g, h) is
isomorphic to one of the following:
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Non-reductive homogeneous manifolds

(A.1) The Lie algebra g is the 5-dimensional Lie algebra sl(2,R)⊕ s(2), where s(2)
is the 2-dimensional solvable Lie algebra. There is a basis {e1, . . . , e5} such
that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4 .

The subalgebras are given by h = span{h1 = e3 + e4} and m = span{u1 =
e1, u2 = e2, u3 = e5, u4 = e3 − e4}. With respect to the basis {θ1, . . . , θ4},
dual to {u1, . . . , u4}, we have the description of the left-invariant metric:

g = a(θ1 ◦ θ1− θ1 ◦ θ3 + 2 θ2 ◦ θ4) + b θ2 ◦ θ2 + 2c θ2 ◦ θ3 + q θ3 ◦ θ3, (3.1)

where a(a− 4q) 6= 0.

(A.2) The Lie algebra g is the 1-parameter family of 5-dimensional solvable Lie al-
gebras A5,30. There is a basis {e1, . . . , e5} such that g is determined by:

[e1, e5] = (α+ 1)e1, [e2, e4] = e1, [e2, e5] = αe2,

[e3, e4] = e2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

where α ∈ R. The subalgebras are given by h = span{h1 = e4} and
m = span{u1 = e1, u2 = e2, u3 = e3, u4 = e5}. With respect to the basis
{θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the left-invariant
metric:

g = a(−2 θ1 ◦ θ3 + θ2 ◦ θ2) + b θ3 ◦ θ3 + 2c θ3 ◦ θ4 + q θ4 ◦ θ4, (3.2)

where aq 6= 0.

(A.3) The Lie algebra g is one of the 5-dimensional Lie algebras A5,37, A5,36. There
is a basis {e1, . . . , e5} such that g is determined by:

[e1, e4] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −εe3, [e3, e4] = e3, [e3, e5] = e2,

with ε = 1 for A5,37 and ε = −1 for A5,36. The subalgebras are given by h =
span{h1 = e3} and m = span{u1 = e1, u2 = e2, u3 = e4, u4 = e5}. With
respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description
of the left-invariant metric:

g = a(2 θ1 ◦ θ4 + θ2 ◦ θ2) + b θ3 ◦ θ3 + 2c θ3 ◦ θ4 + q θ4 ◦ θ4, (3.3)

where ab 6= 0.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

(A.4) The Lie algebra g is the 6-dimensional Lie algebra of Schrödinger sl(2,R) n
n(3), where n(3) is the 3-dimensional Lie algebra of Heisenberg. There is a
basis {e1, . . . , e6} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5, [e4, e5] = e6 .

The subalgebras are given by h = span{h1 = e3 + e6, h2 = e5} and m =
span{u1 = e1, u2 = e2, u3 = e3 − e6, u4 = e4}. With respect to the basis
{θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the left-invariant
metric:

g = a(θ1 ◦ θ1 + 2θ2 ◦ θ3 +
1

2
θ4 ◦ θ4) + b θ2 ◦ θ2, (3.4)

where a 6= 0.

(A.5) The Lie algebra g is the 7-dimensional Lie algebra sl(2,R) nA1
4,9. There is a

basis {e1, . . . , e7} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −e5, [e1, e6] = e6,

[e2, e3] = e1, [e2, e5] = e6, [e3, e6] = e5, [e4, e7] = 2e4,

[e5, e6] = e4, [e5, e7] = e5, [e6, e7] = e6 .

The subalgebras are given by h = span{h1 = e1 +e7, h2 = e3−e4, h3 = e5}
and m = span{u1 = e1 − e7, u2 = e2, u3 = e3 + e4, u4 = e6}. With respect
to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the
left-invariant metric:

g = a(θ1 ◦ θ1 +
1

2
θ2 ◦ θ3 +

1

8
θ4 ◦ θ4), (3.5)

where a 6= 0.

The following theorem gives a list when the signature of the manifold is (2, 2).

Theorem 3.3. [54] Let (M = G/H, g) be a homogeneous pseudo-Riemannian
manifold of dimension four and signature (2, 2), where H is connected. If M is
non-reductive then the pair (g, h) is isomorphic to one of the following:

(A.1) – (A.3) The corresponding pairs of Lie algebras in Theorem 3.2.

(B.1) The Lie algebra g is the 5-dimensional Lie algebra sl(2,R) n R2. There is a
basis {e1, . . . , e5} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e2, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5 .
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The subalgebras are given by h = span{h1 = e3} and m = span{u1 =
e1, u2 = e2, u3 = e4, u4 = e5}. With respect to the basis {θ1, . . . , θ4}, dual to
{u1, . . . , u4}, we have the description of the left-invariant metric:

g = 2a(θ1 ◦ θ3 + θ2 ◦ θ4) + b θ2 ◦ θ2 + 2c θ2 ◦ θ3 + q θ3 ◦ θ3, (3.6)

where a 6= 0.

(B.2) The Lie algebra g is the 6-dimensional Lie algebra of Schrödinger sl(2,R) n
n(3) as in (A.4) of Theorem 3.2, with the subalgebras h = span{h1 = e3 −
e6, h2 = e5} and m = span{u1 = e1, u2 = e2, u3 = e3 + e6, u4 = e4}. With
respect to the basis {θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description
of the left-invariant metric:

g = a(−θ1 ◦ θ1 + 2θ2 ◦ θ3 +
1

2
θ4 ◦ θ4) + b θ2 ◦ θ2, (3.7)

where a 6= 0.

(B.3) The Lie algebra g is the 7-dimensional Lie algebra sl(2,R) n R2 ⊕ R. There
is a basis {e1, . . . , e7} such that g is determined by:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5 .

The subalgebras are given by h = span{h1 = e3, h2 = e5 + e6} and m =
span{u1 = e1, u2 = e2, u3 = e3, u4 = e4}. With respect to the basis
{θ1, . . . , θ4}, dual to {u1, . . . , u4}, we have the description of the left-invariant
metric:

g = 2a(θ1 ◦ θ3 + θ2 ◦ θ4) + b θ3 ◦ θ3, (3.8)

where a 6= 0.

The following theorem gives a complete classification when the space is simply
connected.

Theorem 3.4. [54] If (M = G/H, g) is a four-dimensional homogeneous simply
connected and non-reductive pseudo-Riemannian manifold, then:

(i) M is diffeomorphic to R4.

(ii) If G is the complete group of isometries then the pair of Lie algebras for G/H
is equivalent to one of the cases in Theorem 3.2 excluding the case (A.5), or to
one of the cases in Theorem 3.3.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

Conversely, for any pair of Lie algebras in Theorem 3.2 excluding the case (A.5), or
for any pair of Lie algebras in Theorem 3.3, there is a pseudo-Riemannian metric in
R4 (subject to the signature conditions), where the group of isometries acts transi-
tively on R4. The Lie algebra of the symmetry group is given by the Lie algebra g
and the Lie algebra of the isotropy group at a point is given by h.

3.1.2 Description in coordinates

Calvaruso, Fino and Zaeim established the following coordinate description, which
will be used in what follows:

Theorem 3.5. [25] Let (M, g) be a non-reductive homogeneous pseudo-Riemannian
manifold of dimension four. Then it is locally isometric to one of the following:

(A.1) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4 + q dx3 ◦ dx3,

where a, b, c and q are arbitrary constants with a(a− 4q) 6= 0.

(A.2) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + b e2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c, q and α are arbitrary constants with aq 6= 0.

(A.3) An open subset U ⊂ R4 with coordinates (x1, x2, x3, x4) and metric tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and the open set
U = {(x1, x2, x3, x4) ∈ R4; cos(x4) 6= 0}, or

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and U = R4.
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(A.4) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
a
2 (x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ax2(4 + (x4)2)dx1 ◦ dx3+a(1 + 2x2x3)x4dx1 ◦ dx4+b dx2 ◦ dx2

+ a
2 (4 + (x4)2)dx2 ◦ dx3 + ax3x4dx2 ◦ dx4 + a

2 dx
4 ◦ dx4,

where a and b are arbitrary constants with a 6= 0.

(A.5) (R2 \ {(0, 0)})× R2 with coordinates (x1, x2, x3, x4) and metric tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4 dx
1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8 dx
3 ◦ dx3,

where a 6= 0 is an arbitrary constant.

(B.1) R4 with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2
)
dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

where a, b, c and q are arbitrary constants with a 6= 0.

(B.2) U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and
metric tensor

g =
(
a− a(x4)2

2 + 4b(x2)2
)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

−ax2((x4)2 − 4)dx1 ◦ dx3−a(1 + 2x2x3)x4dx1 ◦ dx4+b dx2 ◦ dx2

− 1
2a((x4)2 − 4)dx2 ◦ dx3 − ax3x4dx2 ◦ dx4 − 1

2a dx
4 ◦ dx4,

where a and b are arbitrary constants with a 6= 0.

(B.3) R4 with coordinates (x1, x2, x3, x4) and metric tensor

84



3.1 Classification of four-dimensional non-reductive homogeneous manifolds

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3,

where a and b are arbitrary constants with a 6= 0.

It is worth emphasizing that the spaces of Types (A.1)–(A.3) admit metrics both
of Lorentzian and neutral signature depending on the values of the constants defin-
ing the corresponding metrics. Metrics of Type (A.4) and Type (A.5) are always
Lorentzian, while metrics of Types (B.1)–(B.3) are of neutral signature (2, 2).

3.1.3 Ricci tensor and Weyl curvature tensor of non-reductive four-di-
mensional homogeneous manifolds

We describe the curvature of non-reductive four-dimensional homogeneous mani-
folds analyzing the Ricci tensor and the Weyl curvature tensor case by case. As a
consequence we obtain Theorem 3.7 and Theorem 3.8. We consider separately all
the possibilities in Theorem 3.5.

Type (A.1)

Consider the metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(3.9)

It immediately follows from the above expression that det(g) = 1
4a

3(a− 4q), which
shows that the metric (3.9) is Lorentzian if a(a − 4q) < 0 and of neutral signature
otherwise. Further observe that the restriction a(a − 4q) 6= 0 in Theorem 3.5–(A.1)
ensures that g is non-degenerate.

The Ricci operator is given by

Ric =
1

a


−2 0 1 0

0 −2 −2x2 0

0 0 0 0
8b(a+4q)x2

a(a−4q)
4b(a+4q)
a(a−4q)

2(ax4−c)
a −2

 , (3.10)
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Non-reductive homogeneous manifolds

showing that the manifold is never Einstein for any a, b, c, q ∈ R. The non-zero
components of the Weyl tensor are (up to the usual symmetries):

W1212 = 8bq−6ab
a−4q , W1213 = −16bqx2

a−4q , W1223 = − 8bq
a−4q ,

W1313 = −8bq(x2)2(a+4q)
a(a−4q) , W1323 = −4bqx2(a+4q)

a(a−4q) , W2323 = −2bq(a+4q)
a(a−4q) .

(3.11)

Note that if b = 0 then the manifold is locally conformally flat.

Type (A.2)

Consider the metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + be2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.12)

It immediately follows from the above expression that det(g) = −a3q e6αx4 , which
shows that the metric (3.12) is Lorentzian if aq > 0 and of neutral signature other-
wise. Further observe that the restriction aq 6= 0 in Theorem 3.5–(A.2) ensures that
g is non-degenerate.

The Ricci operator is given by

Ric = −3α2

q


1 0 b(3α−2)

3aα2 e−2x4 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (3.13)

Hence (M, g) is Einstein if and only if b = 0 (with scalar curvature τ = −12α
2

q ),
or α = 2

3 (with scalar curvature τ = −16
3q ), or Ricci-flat if α = 0. The non-zero

components of the Weyl tensor are given by

W2323 = −(α− 2)a be2(2α−1)x4

2q
, W3434 =

1

2
(α− 2)be2(α−1)x4 . (3.14)

Note that if α = 2 or b = 0 then the manifold is locally conformally flat.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let U be the open
set in R4 determined by U = {(x1, x2, x3, x4) ∈ R4; cos(x4) 6= 0} and the metric
tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.15)
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Now det(g+) = −a3b cos(x4)2 e6x3 shows that the metric (3.15) is Lorentzian if
ab > 0 and of neutral signature otherwise. Further observe that the restriction ab 6= 0
in Theorem 3.5–(A.3) ensures that g+ is non-degenerate.

The Ricci operator is given by

Ric = −3

b


1 0 0 − (b+q)e−2x3

3a

0 1 0 0

0 0 1 0

0 0 0 1

 , (3.16)

and thus (M, g) is Einstein if and only if b = −q. The non-zero components of the
Weyl tensor are:

W2424 =
ae2x3(b+ q) cos

(
x4
)2

2b
, W3434 = −b+ q

2
. (3.17)

Now we consider the second case for Type (A.3) metrics. Let M be R4 with
metric tensor

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .
(3.18)

Next det(g−) = −a3b cosh(x4)2 e6x3 shows that the metric (3.18) is Lorentzian if
ab > 0 and of neutral signature otherwise. Further observe that the restriction ab 6= 0
in Theorem 3.5–(A.3) ensures that g− is non-degenerate.

The Ricci operator is given by

Ric = −3

b


1 0 0 (b−q)e−2x3

3a

0 1 0 0

0 0 1 0

0 0 0 1

 , (3.19)

and thus (M, g) is Einstein if and only if b = q in which case the manifold is locally
conformally flat. The non-vanishing components of the Weyl tensor are:

W2424 = −
ae2x3(b− q) cosh

(
x4
)2

2b
, W3434 =

b− q
2

. (3.20)
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Type (A.4)

Consider the metric tensor

g =
(
a
2 (x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ ax2(4 + (x4)2)dx1 ◦ dx3 + a(1 + 2x2x3)x4dx1 ◦ dx4

+ b dx2 ◦ dx2 + a
2 (4 + (x4)2)dx2 ◦ dx3

+ ax3x4dx2 ◦ dx4 + a
2 dx

4 ◦ dx4 .

(3.21)

It follows from the above expression that det(g) = − 1
32a

4(4+(x4)2)2, which shows
that the metric (3.21) is Lorentzian. Further observe that the restriction a 6= 0 in
Theorem 3.5–(A.4) ensures that g is non-degenerate.

The Ricci operator is given by

Ric = −3

a


1 0 0 0

0 1 0 0
40bx2

3a((x4)2+4)
20b

3a((x4)2+4)
1 0

0 0 0 1

 , (3.22)

which shows that (M, g) is Einstein if and only if b = 0 in which case the manifold
is of constant sectional curvature taking into account that the non-zero components
of the Weyl tensor are given by

W1212 = 3
4b
(
(x4)2 − 2

)
, W1214 = −3

2bx
2x4, W1224 = −3bx4

4 ,

W1414 = 3b(x2)2, W1424 = 3bx2

2 , W2424 = 3b
4 .

(3.23)

Type (A.5)

Let M = (R2 \ {(0, 0)}) × R2 and let (x1, x2, x3, x4) be the coordinates. Consider
the metric tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4 dx
1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8 dx
3 ◦ dx3 .

(3.24)

Since det(g) = − a4

2048(x2)2
, the metric (3.24) is Lorentzian and the restriction a 6= 0

in Theorem 3.5–(A.5) ensures that g is non-degenerate.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

The Ricci tensor is given by

ρ =


0 3x4

2x2
0 −3

2

3x4

2x2
−3((x3)2+2x1x4+2)

2(x2)2
3x3

2x2
3x1

2x2

0 3x3

2x2
−3

2 0

−3
2

3x1

2x2
0 0

 , (3.25)

from where it follows that the corresponding Ricci operator is a multiple of the iden-
tity, Ric = −12

a Id, and thus Einstein. Moreover, the Weyl tensor vanishes identically.
Therefore any Type (A.5) manifold has constant sectional curvature.

Type (B.1)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2
)
dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(3.26)

Since det(g) = a4 and the component g44 = 0, the metric (3.26) is of neutral
signature and the restriction a 6= 0 in Theorem 3.5–(B.1) ensures that g is non-
degenerate.

The Ricci operator is given by

Ric =


3q
2a2

0 0 0

0 3q
2a2

0 0

0 0 3q
2a2

0
15
a3
x2(bq − c2) 15

2a3
(bq − c2) 0 3q

2a2

 , (3.27)

from where it follows that (M, g) is Einstein if and only if c2−bq = 0. The non-zero
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Non-reductive homogeneous manifolds

components of the Weyl tensor are given by

W1212 =
−6a2(b+2cx4+q(x4)2)+ax3(−7bq+6c2−qx4(2c+qx4))+5q(x3)2(c2−bq)

2a2
,

W1213 =
2x2(a(7bq−6c2+qx4(2c+qx4))+10qx3(bq−c2))−a(6a+qx3)(c+qx4)

4a2
,

W1214 = −2x2(6a+qx3)(c+qx4)+qx3(2a+qx3)
4a ,

W1223 =
a(7bq−6c2+qx4(2c+qx4))+10qx3(bq−c2)

4a2
,

W1224 = −(6a+qx3)(c+qx4)
4a , W1234 = − q(2a+qx3)

4a ,

W1313 =
q(−a2+2ax2(c+qx4)+20(x2)2(c2−bq))

2a2
,

W1314 =
qx2(−2a+2x2(c+qx4)+qx3)

2a ,

W1323 =
q(a(c+qx4)+20x2(c2−bq))

4a2
, W1324 =

q(x2(c+qx4)−a)
2a ,

W1334 = q2x2

2a , W1423 =
q(2x2(c+qx4)+qx3)

4a , W1424 = −qx2,

W1414 = −2q(x2)2, W2334 = q2

4a , W2424 = − q
2 ,

W2323 =
5q(c2−bq)

2a2
, W2324 =

q(c+qx4)
4a .

(3.28)

Note that if b = c = q = 0 then W = 0.

Type (B.2)

Let U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and
metric tensor

g =
(
a− a(x4)2

2 + 4b(x2)2
)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

− ax2((x4)2 − 4)dx1 ◦ dx3 − a(1 + 2x2x3)x4dx1 ◦ dx4

+ b dx2 ◦ dx2 − 1
2a((x4)2 − 4)dx2 ◦ dx3

− ax3x4dx2 ◦ dx4 − 1
2a dx

4 ◦ dx4 .

(3.29)

Since det(g) = 1
32a

4((x4)2− 4)2 and the component g33 = 0, the metric (3.29) is of
neutral signature and the restriction a 6= 0, x4 6= ±2 in Theorem 3.5–(B.2) ensures
that g is non-degenerate.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

The Ricci operator is given by

Ric = −3

a


1 0 0 0

0 1 0 0

− 40bx2

3a((x4)2−4)
− 20b

3a((x4)2−4)
1 0

0 0 0 1

 , (3.30)

which shows that (M, g) is Einstein if and only if b = 0. In this case, the manifold
is locally conformally flat since the non-zero components of the Weyl tensor are
determined by

W1212 = −3
4b
(
(x4)2 + 2

)
, W1214 = 3

2bx
2x4, W1224 = 3bx4

4 ,

W1414 = −3b(x2)2, W1424 = −3bx2

2 , W2424 = −3b
4 .

(3.31)

Note that W = 0 if and only if the manifold has constant sectional curvature.

Type (B.3)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3 .

(3.32)

Since det(g) = a4e−2x2 and the component g44 = 0, the metric (3.32) is of neutral
signature and the restriction a 6= 0 in Theorem 3.5–(B.3) ensures that g is non-
degenerate.

A straightforward calculation shows that the Ricci operator of any Type (B.3)
metric vanishes identically and hence they are all Ricci-flat. The Weyl tensor is not
necessarily zero and the only non-zero component of the Weyl tensor is given by

W2323 = −3b, (3.33)

which shows that (M, g) is flat if and only if b = 0.

Remark 3.6. As a consequence of the expressions of the Ricci and the Weyl tensor
in this section, a metric given by Theorem 3.5 is of constant sectional curvature κ if
and only if it corresponds to one of the following (see also [24, 26, 54]):

Type (A.2) with b = 0, in which case κ = −α2

q .
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Non-reductive homogeneous manifolds

Type (A.3) with b = −εq, in which case κ = ε1
q .

Type (A.4) with b = 0, in which case κ = − 1
a .

Type (A.5), in which case κ = − 4
a .

Type (B.1) with q = c = b = 0, in which case is flat.

Type (B.2) with b = 0, in which case κ = − 1
a .

Type (B.3) with b = 0, in which case is flat.

Fels and Renner [54] classified the Einstein non-reductive four-dimensional ho-
mogeneous spaces, showing that they must be of Type (A.2) or (B.3) (see also [24,
25, 27]). The following theorem summarizes all the previous results.

Theorem 3.7. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is Ein-
stein if and only if it has constant sectional curvature or it corresponds to one of the
following:

(i) Type (A.2) with α = 2
3 and aq 6= 0:

g = −2ae
4
3
x4 dx1 ◦ dx3 + ae

4
3
x4dx2 ◦ dx2 + be−

2
3
x4dx3 ◦ dx3

+ 2ce−
1
3
x4dx3 ◦ dx4 + q dx4 ◦ dx4 .

(ii) Type (B.1) with q = c = 0 6= ba:

g =
(
2ax3 + 4b(x2)2

)
dx1 ◦ dx1 + 2(2bx2)dx1 ◦ dx2

+ 2a dx1 ◦ dx3 + 4ax2dx1 ◦ dx4 + b dx2 ◦ dx2 + 2a dx2 ◦ dx4.

(iii) Type (B.1) with q 6= 0, b = c2

q and a 6= 0:

g =
(
q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4c2

q (x2)2
)
dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2c2

q x
2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + c2

q )dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3.

(iv) Type (B.3) with ab 6= 0:

92
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g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3 .

In all the cases, the manifold is of neutral signature.

Some generalizations of the Einstein condition were studied in [24] and [26]
showing which of these manifolds admit Ricci solitons.

The main goal of this chapter is to study the conformal geometry of these spaces
aimed to describe all the conformally Einstein non-reductive homogeneous spaces.
Clearly the Einstein cases mentioned above as well as the locally conformally flat
cases already described in [27] should be discarded, since they all are conformally
Einstein.

Theorem 3.8. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is locally
conformally flat if and only if it is of constant curvature or it corresponds to one of
the following cases:

(i) Type (A.1) with b = 0 and a(a− 4q) 6= 0:

g = a dx1 ◦ dx1 − (4ax2x4 − 4cx2 + a) dx1 ◦ dx3

+ 4ax2 dx1 ◦ dx4 − 2(ax4 − c) dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3 .

(ii) Type (A.2) with α = 2 and abq 6= 0:

g = −2ae4x4 dx1 ◦ dx3 + ae4x4dx2 ◦ dx2 + be2x4dx3 ◦ dx3

+ 2cex
4
dx3 ◦ dx4 + q dx4 ◦ dx4 .

3.2 Bach-flat non-reductive homogeneous manifolds

In this section we briefly schedule some basic facts about the curvature of non-
reductive homogeneous spaces. All the curvature expressions are obtained after some
straightforward calculations that we omit. We consider separately all the possibilities
in Theorem 3.5 and analyze the Bach tensor case by case. As a consequence, one
obtains the proof of Theorem 3.9.

3.2.1 Non-reductive spaces admitting Lorentzian and neutral signature
metrics

With the notation of Theorem 3.5 at hand, the non-reductive four-dimensional homo-
geneous manifolds admitting both Lorentzian and neutral signature metrics are those
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corresponding to Types (A.1), (A.2) and (A.3).

Type (A.1)

Consider the metric tensor

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

(3.34)

where a(a−4q) 6= 0. The non-zero components of the divergence of the Weyl tensor
are given by (up to symmetries):

div4W121 = 12bx2(a+4q)
a(a−4q) ,

div4W122 = 6b(a+4q)
a(a−4q) ,

div4W131 = −32bq(x2)2

a2−4aq
,

div4W132 = div4W231 = − 16bqx2

a2−4aq
,

div4W232 = − 8bq
a2−4aq

.

(3.35)

The Bach tensor is given by

B =


−256b q (3a+4q) (x2)2

a2(a−4q)2
−128b q (3a+4q)x2

a2(a−4q)2
0 0

−128b q (3a+4q)x2

a2(a−4q)2
−64b q (3a+4q)

a2(a−4q)2
0 0

0 0 0 0

0 0 0 0

 . (3.36)

An immediate consequence of previous expression is that a Type (A.1) non-
reductive homogeneous space is Bach-flat if and only if one of the following holds:
b = 0, q = 0 or q = −3a

4 . Moreover:

(1) If b = 0, then Equation (3.11) shows that (M, g) is locally conformally flat.

(2) If b 6= 0, then (M, g) is neither locally conformally flat nor Einstein.

Type (A.2)

Consider the metric tensor

g = −2ae2αx4 dx1 ◦ dx3 + ae2αx4dx2 ◦ dx2 + be2(α−1)x4dx3 ◦ dx3

+ 2ce(α−1)x4dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.37)
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where aq 6= 0. The only non-zero component of the divergence of the Weyl tensor is
given by

div4W343 =
(α− 2)(3α− 2) be2(α−1)x4

2q
. (3.38)

In this case the Bach tensor is expressed with respect to the coordinate basis as

B =


0 0 0 0

0 0 0 0

0 0 (α−2)(α−1)(3α−2)be2(α−1)x4

q2
0

0 0 0 0

 . (3.39)

Hence a non-reductive homogeneous space of Type (A.2) is Bach-flat if and only
if b = 0, α = 2

3 , α = 1 or α = 2. Moreover:

(1) If b = 0 then Equations (3.13) and (3.14) show that the manifold is of constant
sectional curvature κ = −α2

q .

(2) If α = 2
3 , then W3434 = −2

3be
− 2x4

3 and hence the manifold is not locally
conformally flat, unless b = 0.

(3) If α = 1 thenW3434 = − b
2 , which shows that (M, g) is not locally conformally

flat unless b = 0.

(4) If α = 2, then Equation (3.14) shows that (M, g) is locally conformally flat
but not Einstein unless b = 0.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let U be the open
set in R4 determined by U = {(x1, x2, x3, x4) ∈ R4; cos(x4) 6= 0} and the metric
tensor

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.40)

where ab 6= 0. The only non-zero component of the divergence of the Weyl tensor is

div4W344 =
b+ q

2b
. (3.41)
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Non-reductive homogeneous manifolds

Now, a long but straightforward computation shows that (M, g+) is always Bach-
flat. Moreover, (M, g+) is locally conformally flat if and only if b = −q by Equa-
tion (3.17), in which case it is Einstein and thus of constant sectional curvature
κ = 1

q .

Now we consider the second case for Type (A.3) metrics. Let M be R4 with
metric tensor

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,
(3.42)

where ab 6= 0. The only non-zero component of the divergence of the Weyl tensor is

div4W344 =
1

2

(q
b
− 1
)
. (3.43)

Furthermore, a long but straightforward computation shows that (M, g−) is always
Bach-flat. Moreover, (M, g−) is locally conformally flat if and only if b = q by
Equation (3.20), in which case it is Einstein and thus of constant sectional curvature
κ = −1

q .
Hence any Einstein Type (A.3) manifold is necessarily of constant sectional cur-

vature.

3.2.2 Non-reductive spaces admitting only Lorentzian metrics

Type (A.4)

Consider the metric tensor

g =
(
a
2 (x4)2 + 4b(x2)2 + a

)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

+ ax2(4 + (x4)2)dx1 ◦ dx3 + a(1 + 2x2x3)x4dx1 ◦ dx4 + bdx2 ◦ dx2

+ a
2 (4 + (x4)2)dx2 ◦ dx3 + ax3x4dx2 ◦ dx4 + a

2 dx
4 ◦ dx4,

(3.44)

where a 6= 0. The only non-zero components of the divergence of the Weyl tensor
are given by

div4W121 = −15bx2

a
, div4W122 = −15b

2a
. (3.45)

The Bach tensor is given by

B =


−120b(x2)2

a2
−60bx2

a2
0 0

−60bx2

a2
−30b

a2
0 0

0 0 0 0

0 0 0 0

 . (3.46)
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3.2 Bach-flat non-reductive homogeneous manifolds

Hence, a Type (A.4) metric is Bach-flat if and only if b = 0, in which case (M, g) is
locally conformally flat by Equation (3.23), and thus of constant sectional curvature
κ = − 1

a , as the Ricci operator shows.

Type (A.5)

Let M = (R2 \ {(0, 0)}) × R2 and let (x1, x2, x3, x4) be the coordinates. Consider
the metric tensor

g = −ax4

4x2
dx1 ◦ dx2 + a

4 dx
1 ◦ dx4 + a(2+2x1x4+(x3)2)

8(x2)2
dx2 ◦ dx2

− ax3

4x2
dx2 ◦ dx3 − ax1

4x2
dx2 ◦ dx4 + a

8 dx
3 ◦ dx3,

(3.47)

where a 6= 0. In this case, the manifold is Einstein and the Weyl tensor vanishes
identically. Therefore, any Type (A.5) metric is always of constant sectional curva-
ture κ = − 4

a .

3.2.3 Non-reductive spaces admitting only neutral signature metrics.

There exist three different families of non-reductive homogeneous four-manifolds
which admit exclusively neutral signature metrics.

Type (B.1)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g =
(
q((x3)2 + 4x2x3x4 + 4(x2)2(x4)2)

+4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2
)
dx1 ◦ dx1

+ 2(q(x3x4 + 2x2(x4)2) + 4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2

+ 2(q(x3 + 2x2x4) + 2cx2 + a)dx1 ◦ dx3 + 4ax2dx1 ◦ dx4

+ (q(x4)2 + 2cx4 + b)dx2 ◦ dx2 + 2(qx4 + c)dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + q dx3 ◦ dx3,

(3.48)
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Non-reductive homogeneous manifolds

where a 6= 0. In this case, the non-zero components of the divergence of the Weyl
tensor are given by

div4W121 = −15x2(6a−qx3)(c2−bq)
4a3

,

div4W122 = −15(6a−qx3)(c2−bq)
8a3

,

div4W232 = −15q(c2−bq)
8a3

,

div4W131 = 4(x2)2 div4W232,

div4W132 = div4W231 = 2x2 div4W232 .

(3.49)

The Bach tensor is given by

B =


240q(c2−bq)(x2)2

a4
120q(c2−bq)x2

a4
0 0

120q(c2−bq)x2

a4
60q(c2−bq)

a4
0 0

0 0 0 0

0 0 0 0

 . (3.50)

Thus, a Type (B.1) metric is Bach-flat if and only if q = 0 or c2− bq = 0, in the latter
case being Einstein. Moreover,

(1) If q = 0, then the Ricci operator in Equation (3.27) is either zero or two-step
nilpotent and Equation (3.28) gives W1224 = −3

2c, thus distinguishing the
following two cases:

(a) If q = 0 and c = 0, then (M, g) is Ricci-flat and the only non-zero
component of the Weyl tensor is W1212 = −3b. Therefore (M, g) is flat if
q = c = b = 0.
Otherwise, if q = c = 0 6= b, then the Jacobi operators J (x)( · ) =
R(x, · )x are two-step nilpotent. Hence (M, g) is Osserman and thus
half conformally flat. (See [59] and the references therein for further
information about Osserman manifolds).

(b) If q = 0 and c 6= 0, then (M, g) is not locally conformally flat. Moreover
the conformal Jacobi operators JW (x)( · ) = W (x, · )x are nilpotent
and (M, g) is half conformally flat. (See [86] and the references therein
for further information about conformally Osserman manifolds).

(2) If q 6= 0 and b = c2

q , then Equation (3.28) shows that W1334 = q2x2

2a and hence
(M, g) is not locally conformally flat. Equation (3.27) shows that (M, g) is
Einstein and moreover the Jacobi operator J (x)( · ) = R(x, · )x associated
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3.2 Bach-flat non-reductive homogeneous manifolds

to any unit vector x has constant eigenvalues {0, εx q
a2
, εx

q
4a2
, εx

q
4a2
}, where

g(x, x) = εx = ±1.

Moreover (M, g) is locally isometric to a para-complex space form of con-
stant para-holomorphic sectional curvature H = − q

a2
, and thus a modified

Riemannian extension as in [29].

Type (B.2)

Let U = {(x1, x2, x3, x4) ∈ R4;x4 6= ±2} with coordinates (x1, x2, x3, x4) and
metric tensor

g =
(
a− a(x4)2

2 + 4b(x2)2
)
dx1 ◦ dx1 + 4bx2dx1 ◦ dx2

− ax2((x4)2 − 4)dx1 ◦ dx3 − a(1 + 2x2x3)x4dx1 ◦ dx4 + bdx2 ◦ dx2

− 1
2a((x4)2 − 4)dx2 ◦ dx3 − ax3x4dx2 ◦ dx4 − 1

2a dx
4 ◦ dx4,

(3.51)

where a 6= 0. The non-zero components of the divergence of the Weyl tensor are
given by

div4W121 = −15bx2

a
, div4W122 = −15b

2a
. (3.52)

The Bach tensor is given by

B =


−120b(x2)2

a2
−60bx2

a2
0 0

−60bx2

a2
−30b

a2
0 0

0 0 0 0

0 0 0 0

 . (3.53)

Now it follows from the previous expressions that a metric (3.51) is Bach-flat if
and only if b = 0, in which case it is Einstein and locally conformally flat, and thus
of constant sectional curvature κ = − 1

a .

Type (B.3)

Let M = R4 with coordinates (x1, x2, x3, x4) and metric tensor

g = −2ae−x
2
x3dx1 ◦ dx2 + 2ae−x

2
dx1 ◦ dx3

+ 2(2b(x3)2 − ax4)dx2 ◦ dx2 − 4bx3dx2 ◦ dx3

+ 2a dx2 ◦ dx4 + b dx3 ◦ dx3,

(3.54)
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Non-reductive homogeneous manifolds

where a 6= 0. The divergence of the Weyl tensor and the Bach tensor are both zero.
Any non-reductive metric of Type (B.3) with b 6= 0 has two-step nilpotent Jacobi
operators and thus it is Osserman. Therefore, it is Einstein and half conformally flat.

Bach-flat metrics are critical points for the functional

W : g 7→ W(g) =

∫
M
‖W‖2 dvolg

and one has that locally conformally Einstein metrics are Bach-flat. Hence, aimed to
describe all the non-reductive four-dimensional homogeneous conformally Einstein
metrics, one has the following result.

Theorem 3.9. Let (M, g) be a manifold given by Theorem 3.5. Then (M, g) is Bach-
flat if and only if it is locally conformally flat, Einstein or one of the following:

(i) Type (A.1) with q = 0 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

(ii) Type (A.1) with q = −3a
4 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4−c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3 .

(iii) Type (A.2) with α = 1 and abq 6= 0:

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .

(iv) Type (A.3) with metric

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= −q, or with metric

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= q.
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3.2 Bach-flat non-reductive homogeneous manifolds

(v) Type (B.1) with q = 0 and ac 6= 0:

g =
(
4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2

)
dx1 ◦ dx1

+ 2(4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2 + 2(2cx2 + a)dx1 ◦ dx3

+ 4ax2dx1 ◦ dx4 + (2cx4 + b)dx2 ◦ dx2

+ 2c dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

Half conformally flat non-reductive homogeneous spaces

A special class of Bach-flat spaces is that of half conformally flat manifolds. While
half conformally flat Lorentzian metrics are locally conformally flat, there are many
strictly half conformally flat examples in the Riemannian and neutral signature set-
tings. Recall that a four-dimensional manifold is half conformally flat if and only if
is conformally Osserman [13], i.e., the spectrum of the conformal Jacobi operators
JW (x)( · ) = W (x, · )x is constant on the unit pseudo-spheres S±(TpM) at each
point p ∈M (see [86] and the references therein).

An explicit calculation of the conformal Jacobi operators shows that a metric
given by Theorem 3.5 is half conformally flat and not locally conformally flat if and
only if it corresponds to one of the following cases:

Type (A.1) with q = 0 and ab 6= 0.

Type (A.1) with q = −3
4a and ab 6= 0.

Type (B.1) with q = c = 0 and ab 6= 0.

Type (B.1) with q = 0 and ac 6= 0.

Type (B.1) with aq 6= 0 and b = c2

q .

Type (B.3) with ab 6= 0.

Note that this agrees with the description of (anti-)self-dual non-reductive homoge-
neous spaces in [27]. Moreover, the conformal Jacobi operators are two-step nilpo-
tent in all cases but the one corresponding to Type (B.1) with aq 6= 0 and b = c2

q
where they diagonalize.

It is worth mentioning that in some of the cases above the manifold is also
Einstein and thus pointwise Osserman, i.e., the spectrum of the Jacobi operators
J (x)( · ) = R(x, · )x is constant on the unit pseudo-spheres S±(TpM) at each point
p ∈M (see [59] for further information about Osserman manifolds).

More precisely, a metric given by Theorem 3.5 is Osserman if and only if it is of
constant sectional curvature (cf. Remark 3.6) or otherwise:
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Non-reductive homogeneous manifolds

(i) (M, g) is of Type (B.1) with q = c = 0 and ab 6= 0, in which case the Jacobi
operators are two-step nilpotent, or

(ii) (M, g) is of Type (B.1) with aq 6= 0 and b = c2

q . In this case, for any unit
spacelike vector the corresponding Jacobi operator J (x)( · ) = R(x, · )x is di-
agonalizable with eigenvalues {0, εx q

a2
, 1

4εx
q
a2
, 1

4εx
q
a2
}, where εx = g(x, x);

thus the manifold is locally isometric to a complex or para-complex space
form [59]. A long but straightforward calculation shows that for any non-null
vector x, the vector space span{x} ⊕ ker(J (x) − εx q

a2
Id) is of Lorentzian

signature. Hence (M, g) is a para-complex space form.

(iii) (M, g) is of Type (B.3) with ab 6= 0, in which case the Jacobi operators are
two-step nilpotent.

Moreover, it is worth emphasizing that in all the cases above the manifold is locally
symmetric.

Remark 3.10. A long but straightforward calculation shows that a metric given by
Theorem 3.5 of non-constant sectional curvature is locally symmetric if and only if it
is

Type (A.1) with b = 0 and a(a − 4q) 6= 0, in which case (M, g) is locally
conformally flat with diagonalizable Ricci operator. Hence locally isometric to
a product R×N , where N is of constant sectional curvature κN = − 1

a ,

or it corresponds to one of the following cases:

Type (B.1) with q = c = 0 and ab 6= 0, in which case (M, g) is Osserman with
two-step nilpotent Jacobi operators.

Type (B.1) with aq 6= 0 and b = c2

q , in which case (M, g) is a para-complex
space form.

Type (B.3) with ab 6= 0, in which case (M, g) is Osserman with two-step
nilpotent Jacobi operators.

See [59] for a classification of locally symmetric four-dimensional Osserman mani-
folds and [26] for a description of gradient Ricci solitons on non-reductive homoge-
neous spaces, where metrics of Type (A.1) with b = 0 play a distinguished role.
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3.3 Non-reductive conformally Einstein homogeneous manifolds

3.3 Non-reductive conformally Einstein homogeneous man-
ifolds

The purpose of this section is to prove Theorem 3.1, determining which non-reductive
homogeneous four-manifolds contain an Einstein metric in their conformal class. We
will exclude from our analysis the trivial cases of Einstein and locally conformally flat
manifolds. Moreover, we will obtain the explicit form of the conformal Einstein met-
ric. Since any conformally Einstein manifold is necessarily Bach-flat, Theorem 3.9
shows that the analysis of the conformally Einstein equation

2 Hesϕ +ϕρ =
1

4
{2∆ϕ+ ϕ τ}g (3.55)

must be carried out only for the following cases:

(i) Type (A.1) with q = 0 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

(ii) Type (A.1) with q = −3a
4 and ab 6= 0:

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2−2(ax4−c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3 .

(iii) Type (A.2) with α = 1 and abq 6= 0:

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4 .

(iv) Type (A.3) with metric

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= −q, or with metric

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where ab 6= 0 and b 6= q.

103



Non-reductive homogeneous manifolds

(v) Type (B.1) with q = 0 and ac 6= 0:

g =
(
4cx2x3 + 8c(x2)2x4 + 2ax3 + 4b(x2)2

)
dx1 ◦ dx1

+ 2(4cx2x4 + cx3 + 2bx2)dx1 ◦ dx2 + 2(2cx2 + a)dx1 ◦ dx3

+ 4ax2dx1 ◦ dx4 + (2cx4 + b)dx2 ◦ dx2

+ 2c dx2 ◦ dx3 + 2a dx2 ◦ dx4 .

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:

(i) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

where a, b and c are arbitrary constants with ab 6= 0.

(ii) (R4, g) with metric given by

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3,

where a, b and c are arbitrary constants with ab 6= 0.

(iii) (R4, g) with metric given by

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with abq 6= 0.

(iv) (U ⊂ R4, g+) with metric given by

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, and a, b, c and q are arbitrary
constants with ab 6= 0 and b 6= −q, or

(R4, g−) with metric given by

104



3.3 Non-reductive conformally Einstein homogeneous manifolds

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

where a, b, c and q are arbitrary constants with ab 6= 0 and b 6= q.

Moreover, all the cases (i)–(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

In what follows we will use the necessary conditions obtained by Kozameh, New-
man and Tod [72] stated in Theorem 1.14. Relating the solutions ϕ of the conformally
Einstein Equation (1.6) and the conformal deformation σ by σ = − log(ϕ), as a
matter of notation, we define a (0, 3)-tensor field C by C = (div4W )(X,Y, Z) +
W (X,Y, Z,∇σ). Obviously, Cijk = −Cjik for all i, j, k ∈ {1, . . . , 4} and C = 0 is
equivalent to Theorem 1.14–(ii).

Recall that conditions (i)–(ii) in Theorem 1.14 are also sufficient to be confor-
mally Einstein if (M, g) is weakly-generic (i.e., the Weyl tensor, viewed as a map
TM →

⊗3 TM is injective). Note that cases (i)–(iii) in Theorem 3.9 are not weakly-
generic and thus we must study the existence of solutions of Equation (3.55) case by
case. In opposition, metrics corresponding to Theorem 3.9–(iv) are weakly-generic.

3.3.1 Type (A.1) with q = 0 and ab 6= 0 or q = −3a
4

and ab 6= 0

We consider the two possibilities separately.

Type (A.1) with q = 0 and ab 6= 0

In this case by Equation (3.35) the non-zero components of the divergence of the
Weyl tensor are given by

div4W121 =
12 bx2

a
, div4W122 =

6 b

a
, (3.56)

and, by Equation (3.11), the only non-zero component of the Weyl tensor is given by

W1212 = −6b, (3.57)

which shows that (M, g) is not weakly-generic. For an arbitrary positive function
ϕ(x1, x2, x3, x4) on M , let σ = − log(ϕ). Then a straightforward calculation shows
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that the gradient of σ is given in the coordinate basis by

∇σ = 4
a2ϕ

{(
ax4 − c

)
ϕ4 + aϕ3

}
∂x1

− 2
a2ϕ

{
ϕ4

(
a+ 4x2

(
ax4 − c

))
+ 4ax2ϕ3

}
∂x2

+ 4
a2ϕ

{
a
(
2ϕ3 − 2x2ϕ2 + ϕ1

)
+ 2ϕ4

(
ax4 − c

)}
∂x3

+ 2
a3ϕ

{
ϕ4

(
ab+ 4ax4

(
ax4 − 2c

)
+ 4c2

)
+ 2aϕ1

(
ax4 − c

)
+a
(
4ϕ3

(
ax4 − c

)
+ ϕ2

(
4x2

(
c− ax4

)
− a
))}

∂x4 ,

where ϕi = ∂
∂xi
ϕ denote the corresponding partial derivatives.

Thus, the only non-zero components of the tensor C = div4W + W (·, ·, ·,∇σ)
are those given by

a2ϕ C121 = −12b
(
ϕ4

(
a− 4x2

(
c− ax4

))
+ 4ax2ϕ3 + 2ax2ϕ

)
,

a2ϕ C122 = −12b
(
−2ϕ4

(
c− ax4

)
+ 2aϕ3 + aϕ

)
.

(3.58)

Since C = 0 is a necessary condition for (M, g) to be conformally Einstein,
aϕ(C121 − 2x2C122) = −12bϕ4 must be zero and, since b 6= 0, in this case ϕ does
not depend on the coordinate x4. Then

C122 =
−12b(ϕ+ 2ϕ3)

aϕ
, C121 = 2x2C122 .

Hence, C = 0 shows that

ϕ(x1, x2, x3) = e−
x3

2 φ(x1, x2), (3.59)

for some smooth function φ(x1, x2).
Now, we analyze the existence of solutions of Equation (3.55) for some ϕ as

above. In order to simplify the notation, set

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,

and determine the conditions for E = 0.
Since E(∂x1 , ∂x1) = 2e−

x3

2 φ11(x1, x2), any solution of Equation (3.55) must be
of the form given in Equation (3.59) with φ(x1, x2) = α1(x2) + x1α2(x2) for some
smooth functions α1, α2 on M . Taking into account that

E(∂x1 , ∂x2) = −2e−
x3

2 (α′1(x2) + (x1 − 1)α′2(x2)),
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3.3 Non-reductive conformally Einstein homogeneous manifolds

we can show that α1(x2) = µ1 and α2(x2) = µ2 for some constants µ1, µ2. Fur-

ther, the component E(∂x2 , ∂x4) = −2µ2e
−x

3

2 shows that µ2 = 0 and hence Equa-
tion (3.59) reduces to

ϕ = µ1e
−x

3

2 .

Now, a straightforward calculation shows that E = 0 holds and the conformal metric
ḡ = ϕ−2g is Ricci-flat.

Remark 3.11. Since any non-reductive homogeneous manifold of Type (A.1) with
q = 0 and ab 6= 0 is conformally Osserman with two-step nilpotent conformal Jacobi
operators, and this property is conformally invariant, the metric ḡ is Osserman with
two-step nilpotent Jacobi operators.

Type (A.1) with q = −3a
4 and ab 6= 0.

Proceeding as in the previous case, for an arbitrary positive function ϕ(x1, x2, x3, x4)
on M we consider σ = − log(ϕ). Then

∇σ = 1
a2ϕ

{
a
(
ϕ3 + 3x2ϕ2 − 3

2ϕ1

)
+ ϕ4

(
ax4 − c

)}
∂x1

− 1
a2ϕ

{
2ϕ4

(
x2
(
ax4 − c

)
+ a
)

+ ax2
(
2ϕ3 + 6x2ϕ2 − 3ϕ1

)}
∂x2

+ 1
a2ϕ

{
a
(
2ϕ3 − 2x2ϕ2 + ϕ1

)
+ 2ϕ4

(
ax4 − c

)}
∂x3

+ 1
a3ϕ

{
2ϕ4

(
a2(x4)2 + ab− 2acx4 + c2

)
+a
(
ϕ1

(
ax4 − c

)
−2
(
ϕ2

(
x2
(
ax4 − c

)
+ a
)
+ϕ3

(
c− ax4

)))}
∂x4 .

Recall from Equation (3.35) that the non-zero components of the divergence of the
Weyl tensor are given by

div4W121 = −6bx2

a , div4W122 = −3b
a , div4W131 = 6b(x2)2

a ,

div4W232 = 3b
2a , div4W132 = div4W231 = 3bx2

a .

Equation (3.11) shows that the non-zero components of the Weyl tensor are

W1212 = −3b, W1213 = 3bx2, W1223 = 3b
2 ,

W1313 = −3b(x2)2, W1323 = −3bx2

2 , W2323 = −3b
4 .

Then, the non-zero components of the tensor field C are given by

C131 = −x2C121, C231 = −1
2C121,

C132 = −x2C122, C232 = −1
2C122,

C133 = −x2C123, C233 = −1
2C123,
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where

a2ϕ C121 = 6b
(
x2
(
2aϕ+ aϕ1 − 2aϕ3 − 2aϕ4x

4 + 2cϕ4

)
−aϕ4 − 2aϕ2(x2)2

)
,

a2ϕ C122 = 3b
(
2aϕ+ aϕ1 − 2aϕ3 − 2aϕ2x

2 − 2aϕ4x
4 + 2cϕ4

)
,

a2ϕ C123 = −3abϕ4 .

Since ab 6= 0 and C123 = 0 the function ϕ(x1, x2, x3, x4) does not depend on the
coordinate x4 and the tensor field C121 reduces to

C122 =
3b

aϕ

{
2ϕ+ ϕ1 − 2ϕ3 − 2ϕ2x

2
}
, C121 = 2x2C122 .

A solution of the differential equation 2ϕ = 2ϕ3 + 2x2ϕ2 − ϕ1 is necessarily of the
form

ϕ(x1, x2, x3) = e−2x1φ(e2x1x2, 2x1 + x3) = e−2x1(φ ◦ ψ)(x1, x2, x3), (3.60)

where ψ(x1, x2, x3) = (e2x1x2, 2x1 + x3) and φ(z, ω) is an arbitrary function for
z = e2x1x2 and ω = 2x1 + x3.

Now, we analyze the existence of solutions of Equation (3.55) for some ϕ as in
Equation (3.60). Setting

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,

one has E(∂x2 , ∂x2) = 2e2x1∂2
z2φ = 0, and hence

ϕ(x1, x2, x3) = e−2x1
(
e2x1x2φ̂(2x1 + x3) + φ̄(2x1 + x3)

)
for some smooth functions φ̂(ω), φ̄(ω). Considering the component E(∂x2 , ∂x3) =

2φ̂′− φ̂ = 0, one has that φ̂(2x1 + x3) = µe
1
2

(2x1+x3) for some constant µ. Now the
only non-zero components of the tensor field E are given by

E(∂x1 , ∂x1) = 2E(∂x1 , ∂x3) = 2E(∂x3 , ∂x3) = 4e−2x1
(
φ̄− 3φ̄′ + 2φ̄′′

)
.

Hence E = 0 gives φ̄(2x1 + x3) = µ1e
1
2

(2x1+x3) + µ2e
2x1+x3 and thus any solution

of the conformally Einstein equation is of the form

ϕ(x1, x2, x3, x4) = µ1e
x3 + µ2e

1
2
x3−x1 + µ3 x

2 e
1
2
x3+x1 .

Moreover, any of the conformal metrics ḡ = ϕ−2g is Ricci-flat.
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Remark 3.12. Since any non-reductive homogeneous manifold of Type (A.1) with
q = −3

4a and ab 6= 0 is conformally Osserman with two-step nilpotent conformal Ja-
cobi operators, any conformal Einstein metric ḡ is Osserman with two-step nilpotent
Jacobi operators. Moreover, there is a 3-parameter family of conformally equivalent
Osserman metrics. This shows that the cases q = 0 and q = −3

4a are essentially
different since the space of conformally Einstein metrics is one-dimensional in the
first case and three-dimensional in the second one.

3.3.2 Type (A.2) with α = 1 and abq 6= 0

Let ϕ(x1, x2, x3, x4) be a positive function on M and σ = −2 log(ϕ). Then

∇σ = 2
a2qϕ

{
ae−2x4 (qϕ3 − cϕ4)− e−4x4ϕ1

(
c2 − bq

)}
∂x1

− 2
aϕϕ2e

−2x4 ∂x2 + 2
aϕϕ1e

−2x4 ∂x3 − 1
aqϕ

{
2aϕ4 + 2cϕ1e

−2x4
}
∂x4 .

It follows from Equations (3.14) and (3.38) that the non-zero components of the
Weyl tensor and its divergence are given by

W2323 =
ab

2q
e2x4 , W3434 = − b

2
and div4W343 = − b

2q
,

respectively, from where it follows that (M, g) is not weakly-generic. Therefore, the
only non-zero components of the tensor field C = div4W +W (·, ·, ·,∇σ) are those
given by

C232 = − b
q
ϕ1

ϕ , C233 = − b
q
ϕ2

ϕ , C344 = − b
a
ϕ1

ϕ e
−2x4 ,

C343 = b
a q ϕ

(
a (ϕ− ϕ4)− cϕ1e

−2x4
)
.

(3.61)

Since a b 6= 0, the first two expressions in Equation (3.61) show that ϕ(x1, x2, x3, x4)
does not depend on the coordinates x1 and x2. Hence, the tensor field C reduces to

C343 =
b (ϕ− ϕ4)

qϕ
,

whereϕ is a smooth function on the coordinates (x3, x4) and it follows from C343 = 0
that ϕ(x3, x4) = φ(x3)ex

4
, for some smooth function φ(x3).

Considering now the conformally Einstein Equation (3.55), and setting

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g,
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the only non-zero component of the tensor E is

E(∂x3 , ∂x3) =
ex

4
(2qφ′′ − bφ)

q
.

Integrating E(∂x3 , ∂x3) = 0 we obtain that
ϕ = e

x4−x3
√

b
2q

(
κ1e

x3
√

2b
q + κ2

)
, if b q > 0,

ϕ = ex
4
(
κ1 cos

(
x3
√
− b

2q

)
+ κ2 sin

(
x3
√
− b

2q

))
, if b q < 0 .

(3.62)

Moreover, a long but straightforward computation shows that the metric ḡ = ϕ−2g
for any function ϕ given by Equation (3.62) is Ricci-flat.

Remark 3.13. For each of the possibilities in Equation (3.62) there are at least two
conformal metrics which are Einstein (indeed, Ricci-flat). Moreover, for any of
the conformal Einstein metrics, there are some conformal deformation of the met-
ric which remains Einsteinian.

Further observe that no metric (A.2) with α = 1 and abq 6= 0 is half conformally
flat, and hence they are not in the conformal class of any Osserman metric.

3.3.3 Type (A.3) with metrics g± and b 6= ∓q, ab 6= 0

We will briefly schedule the proof of the case corresponding to g+. The analysis of
g− is completely analogous. Hence assume b 6= −q and ab 6= 0. As in the previous
cases, let ϕ(x1, x2, x3, x4) be a positive function and set σ = − log(ϕ). Then

∇σ = 1
a2 bϕ

{
2e−4x3

(
ae2x3 (cϕ3 − bϕ4) + ϕ1

(
bq − c2

))}
∂x1

− 2ϕ2

aϕ

{
e−2x3 sec

(
x4
)2}

∂x2 + 2
a bϕ

{
cϕ1e

−2x3 − aϕ3

}
∂x3

− 2
aϕϕ1e

−2x3∂x4 .

It follows from Equations (3.17) and (3.41) that the non-zero components of the ten-
sor C = div4W +W (·, ·, ·,∇σ) are given by

b ϕ C242 = (b+ q) cos
(
x4
)2
ϕ1, b ϕ C244 = −(b+ q)ϕ2,

aϕ C343 = −(b+ q)e−2x3ϕ1,

a b ϕ C344 = −(b+ q)e−2x3
(
a (ϕ− ϕ3) e2x3 + cϕ1

)
.

(3.63)
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3.3 Non-reductive conformally Einstein homogeneous manifolds

Since ab 6= 0 and b 6= −q the first two equations show that ϕ does not depend on the
coordinates x1 and x2 and the tensor field C reduces to

b ϕ C344 = −(b+ q) (ϕ− ϕ3) ,

where ϕ is a smooth function on the coordinates (x3, x4). Now C344 = 0 gives
ϕ(x3, x4) = φ(x4)ex

3
, for some smooth function φ(x4).

Consider now the conformally Einstein equation and set, as in the previous cases,
E = 2 Hesϕ +ϕρ − 1

4{2∆ϕ + ϕ τ}g . A straightforward calculation shows that the
only non-zero component of the tensor field E is given by

E(∂x4 , ∂x4) =
1

b
ex

3 (
(b− q)φ+ 2bφ′′

)
,

which shows that φ(x4) is determined by the equation φ′′ = − b−q
2b φ. Hence the

conformal deformation ϕ(x3, x4) is given by

ϕ+ = (µ1x
4 + µ2)ex

3
, if b− q = 0,

ϕ+ = e
x3−x4

√
q−b
2b

(
µ1e

x4
√

2(q−b)
b + µ2

)
, if b(q − b) > 0,

ϕ+ = ex
3

(
µ1 cos

(
x4
√

b−q
2b

)
+ µ2 sin

(
x4
√

b−q
2b

))
, if b(q − b) < 0 .

(3.64)

Moreover in all the cases above the conformal metric ḡ+ = ϕ−2
+ g+ is Ricci-flat.

The case of g− is obtained in a completely analogous way. For any metric g−
given by Equation (3.18), the conformal metric ḡ− = ϕ−2

− g− is Ricci-flat, where

ϕ−=(µ1x
4 + µ2)ex

3
, if b+ q = 0,

ϕ−=e
x3−x4

√
q+b
2b

(
µ1e

x4
√

2(q+b)
b + µ2

)
, if b(q + b) > 0,

ϕ−=ex
3

(
µ1 cos

(
x4
√
− b+q

2b

)
+ µ2 sin

(
x4
√
− b+q

2b

))
, if b(q + b) < 0 .

(3.65)

Remark 3.14. For each of the possibilities in Equations (3.64) and (3.65) there are
at least two conformal metrics which are Einstein. Equivalently, for any conformally
Einstein metric, there are some conformal deformation of the metric which remains
to be Einstein.

Further observe that no metric of Type (A.3) with ε = ±1, b 6= ∓q and ab 6= 0 is
half conformally flat, and hence (M, g) is not in the conformal class of an Osserman
metric.
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3.3.4 Type (B.1) with q = 0 and ac 6= 0

Setting q = 0 in Equations (3.28) and (3.49), the non-zero components of the Weyl
tensor and its divergence are given by

div4W121 = −45c2x2

2a2
, div4W122 = −45c2

4a2
, and

W1212 = 3c2x3

a − 3
(
b+ 2cx4

)
, W1213 = −3c(a+2cx2)

2a ,

W1214 = −3cx2, W1223 = −3c2

2a , W1224 = −3c
2 ,

respectively. This shows that, in opposition to the previous cases, (M, g) is weakly-
generic and thus C = div4W + W (·, ·, ·,∇σ) = 0 is a necessary and sufficient
condition to be conformally Einstein.

As in the previous cases, consider ϕ(x1, x2, x3, x4) a positive function and set
σ = − log(ϕ). Express the gradient of σ as

∇σ = 2
a2 ϕ
{cϕ4 − aϕ3} ∂x1 + 2

a2 ϕ

{
2x2 (aϕ3 − cϕ4)− aϕ4

}
∂x2

+ 2
a2 ϕ

{
x3 (2aϕ3 − cϕ4)− aϕ1 + 2aϕ2x

2
}
∂x3

+ 2
a2 ϕ

{
bϕ4 − ϕ2

(
a+ 2cx2

)
+ cϕ1 − cϕ3x

3 + 2cϕ4x
4
}
∂x4 .

Now, the components C123 and C124 of the tensor field C = div4W + W (·, ·, ·,∇σ)
are given by

aϕ C123 = 3cϕ3, a ϕ C124 = 3cϕ4,

and, since c 6= 0 and C123 = C124 = 0, the function ϕ is independent of the coor-
dinates x3 and x4. Assuming ϕ to be a smooth function on the coordinates (x1, x2),
the non-zero components of C reduce to

C121 = −
3c
(
aϕ1 − 15cϕx2

)
a2ϕ

, C122 =
3c (15cϕ− 2aϕ2)

2a2ϕ
. (3.66)

A straightforward computation shows that C122 = 0 if and only if

ϕ = φ(x1)e
15c
2a
x2 , (3.67)

for some smooth function φ(x1). Then C121 becomes

C121 = −
3c
(
aφ′(x1)− 15cx2φ(x1)

)
a2φ(x1)

, (3.68)

from where it follows that φ vanishes identically, and hence ϕ ≡ 0, which is a con-
tradiction. Hence this manifold is not conformally Einstein.
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Remark 3.15. Observe that the conformally Einstein metrics in Theorem 3.1–(i) are
always of neutral signature, while metrics corresponding to cases (ii) and (iii) may
be either Lorentzian or of neutral signature (2, 2), depending on the choice of the
parameters defining the metrics (3.12), (3.15) and (3.18).

Remark 3.16. Let (M, g) be a non-reductive and not locally symmetric homoge-
neous pseudo-Riemannian manifold of dimension four with g the isometry algebra
and h its isotropy subalgebra. Then, the pair of Lie algebras (g, h) is isomorphic to
one of the following Types: (A.1), (A.2), (A.3), (A.4), (B.1) or (B.2). Conversely, for
every pair of Lie algebras (g, h) in this list there exits a non-reductive homogeneous
pseudo-Riemannian four-dimensional manifold with isometry algebra g.

Moreover, the Ad(H)-invariant subspace m (excluding (A.3) with ε = 1) is a
subalgebra of g which implies that each case in the list is locally isometric to a Lie
group G with a left-invariant metric as follows:

(i) The Lie group R× ˜SL(2,R) is locally isometric to Type (A.1) with Lie algebra
m given by

[u1, u2] = 2u2, [u1, u4] = −2u4, [u2, u4] = 2u1 .

(ii) The Lie group R n R3 is locally isometric to Type (A.2) with Lie algebra m
given by

[u1, u4] = (α+ 1)u1, [u2, u4] = αu2, [u3, u4] = (α− 1)u3, or

to Types (A.4) (B.2) with Lie algebra m given by

[u1, u2] = 2u2, [u1, u4] = u4 .

(iii) The Lie group Rn E(1, 1) is locally isometric to Type (A.3) for ε = −1 with
Lie algebra m given by

[u1, u3] = 2u1, [u2, u3] = u2, [u2, u4] = u2 .

(iv) The Lie group R n H3 is locally isometric to Type (B.1) with Lie algebra m
given by

[u1, u2] = 2u2, [u1, u3] = u3, [u1, u4] = −u4, [u2, u4] = u3 .

113





Part II

New examples of Bach-flat metrics
and Ricci solitons





Chapter 4

Bach-flat isotropic gradient Ricci
solitons

Bach-flat structures and Ricci solitons are natural generalizations of Einstein met-
rics. The Riemannian situation is quite rigid, since Bach-flat four-dimensional com-
plete gradient Ricci solitons are locally conformally flat in the shrinking case [36].
The steady case is more involved and triviality of complete Bach-flat gradient Ricci
solitons is proved in [34] under the assumptions of positive Ricci tensor and scalar
curvature attaining a maximum at some interior point.

The purpose of this chapter is to show the existence of non-trivial examples of
Bach-flat gradient Ricci solitons in neutral signature. For that, we construct a family
of Bach-flat metrics (see Theorem 4.1) analyzing the existence of gradient Ricci soli-
tons. Examples of self-dual gradient Ricci solitons which are not locally conformally
flat were already known in signature (2, 2). Hence, our description can be consid-
ered as a generalization of Theorem 1.27 allowing to obtain non-trivial anti-self-dual
examples at the same time. In this chapter we report on work investigated in [33].

4.1 Bach-flat Riemannian extensions determined by a par-
allel tensor field

Our first main result concerns the construction of Bach-flat metrics:

Theorem 4.1. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel
(1, 1)-tensor field T . Let Φ be an arbitrary symmetric (0, 2)-tensor field on Σ. Then
the Bach tensor of (T ∗Σ, gD,Φ,T ) vanishes if and only if T is either a multiple of the
identity or nilpotent.

Proof. In order to compute the Bach tensor of (T ∗Σ, gD,Φ,T ), first of all observe that
being T parallel imposes some restrictions on the components T j i as well as on the
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Christoffel symbols of the connection D:

DT = 0⇒



T 1
2
DΓ11

2 − T 2
1
DΓ12

1 = 0,

T 1
2
DΓ12

2 − T 2
1
DΓ22

1 = 0,

T 2
1
DΓ11

1 + (T 2
2 − T 1

1)DΓ11
2 − T 2

1
DΓ12

2 = 0,

T 1
2
DΓ11

1 + (T 2
2 − T 1

1)DΓ12
1 − T 1

2
DΓ12

2 = 0,

T 2
1
DΓ12

1 + (T 2
2 − T 1

1)DΓ12
2 − T 2

1
DΓ22

2 = 0,

T 1
2
DΓ12

1 + (T 2
2 − T 1

1)DΓ22
1 − T 1

2
DΓ22

2 = 0 .

(4.1)

Then, expressing the Bach tensor Bij = B(∂xi , ∂xj ) in induced coordinates
(xi, xi′), a long but straightforward calculation shows that

(Bij) =

 B11 B12

B12 B22
B̃

B̃ 0

 , (4.2)

where

B̃ =
1

6
((T 1

1 − T 2
2)2 + 4T 1

2T
2

1) · (T 1
1 + T 2

2) ·
(
T 1

1 − T 2
2 2T 2

1

2T 1
2 T 2

2 − T 1
1

)
and where the coefficients B11, B12 and B22 can be written in terms of d = det(T )
and t = tr(T ) as follows:

B11 = −1
6

{
10d3 − 2(t2 + 13T 2

2t− 15(T 2
2)2)d2

+(5t− T 2
2)(t− T 2

2)t2d− (t− T 2
2)2t4

}
x2

1′

− 1
6

{
(T 2

1)2(30d2 + t2d− t4)
}
x2

2′

− 1
3

{
(13t− 30T 2

2)d2 + (3t− T 2
2)t2d− (t− T 2

2)t4
}
T 2

1 x1′x2′

− 1
3

{
(DΓ11

1 + 2DΓ12
2)(t− 2T 2

2) + 2T 2
1
DΓ22

2
}

(t2 − 4d)tx1′

− 1
3

{
DΓ11

2(t− 2T 2
2) + 2T 2

1
DΓ12

2
}

(t2 − 4d)tx2′

− 1
6

{
10d2 + (3t2 − 22T 2

2t + 14(T 2
2)2)d

−(t2 − 4T 2
2t + 2(T 2

2)2)t2
}

Φ11

− 1
3

{
(11t− 14T 2

2)d− 2(t− T 2
2)t2

}
T 2

1Φ12

+ 1
3

{
t2 − 7d

}
(T 2

1)2Φ22

− 2
3(∂x2

DΓ11
2 − ∂x1DΓ12

2)(4d− t2),
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B12 = −1
6

{
(13t− 30T 2

2)d2 + (3t− T 2
2)t2d− (t− T 2

2)t4
}
T 1

2x
2
1′

+ 1
6

{
(17t− 30T 2

2)d2 − (2t + T 2
2)t2d + T 2

2t
4
}
T 2

1x
2
2′

+ 1
6

{
20d3 + 4(4t2 − 15T 2

2t + 15(T 2
2)2)d2

−(3t2 + 2T 2
2t− 2(T 2

2)2)t2d + 2(t− T 2
2)T 2

2t
4
}
x1′x2′

− 1
3

{
DΓ12

1(t− 2T 2
2) + 2T 2

1
DΓ22

1
}

(t2 − 4d)tx1′

− 1
3

{
DΓ12

2(t− 2T 2
2) + 2T 2

1
DΓ22

2
}

(t2 − 4d)tx2′

− 1
6

{
(11t− 14T 2

2)d− 2(t− T 2
2)t2

}
T 1

2Φ11

+ 1
6

{
4d2 + (6t2 − 28T 2

2t + 28(T 2
2)2)d− (t− 2T 2

2)2t2
}

Φ12

+ 1
6

{
(3t− 14T 2

2)d + 2T 2
2t

2
}
T 2

1Φ22

− 1
3

{
(∂x2

DΓ11
1 − ∂x1DΓ12

1 − ∂x2DΓ12
2 + ∂x1

DΓ22
2)(t2 − 4d)

}
,

B22 = −1
6

{
30d2 − t4 + t2d

}
(T 1

2)2x2
1′

− 1
6

{
10d3 + 2(t2 − 17T 2

2t + 15(T 2
2)2)d2

+(4t + T 2
2)T 2

2t
2d− (T 2

2)2t4
}
x2

2′

+ 1
3

{
(17t− 30T 2

2)d2 − (2t + T 2
2)t2d + T 2

2t
4
}
T 1

2x1′x2′

− 1
3

{
DΓ22

1(t− 2T 2
2) + 2T 1

2
DΓ22

2
}

(t2 − 4d)tx1′

+ 1
3

{
DΓ22

2(t− 2T 2
2)− 2T 2

1
DΓ22

1
}

(t2 − 4d)tx2′

− 1
3(7d− t2)(T 1

2)2Φ11

+ 1
3

{
(3t− 14T 2

2)T 1
2d + 2T 1

2T
2

2t
2
}

Φ12

− 1
6

{
10d2 − (5t2 + 6T 2

2t− 14(T 2
2)2)d + t4 − 2(T 2

2)2t2
}

Φ22

− 2
3(∂x2

DΓ12
1 − ∂x1DΓ22

1)(t2 − 4d) .

Suppose first that the Bach tensor of (T ∗Σ, gD,Φ,T ) vanishes. We start analyzing
the case T 1

2 = 0. In this case, the expression of B̃ in Equation (4.2) reduces to

B̃ =
1

6
(T 1

1 − T 2
2)2 · (T 1

1 + T 2
2) ·
(
T 1

1 − T 2
2 2T 2

1

0 T 2
2 − T 1

1

)
. (4.3)

If T 2
2 = T 1

1, we differentiate the component B11 in Equation (4.2) twice with
respect to x2′ to obtain T 2

1T
1

1 = 0. Thus, either T 2
1 = 0 and T is a multiple of

the identity, or T 1
1 = 0 and, in such a case, T is determined by T∂x1 = T 2

1∂x2 and
therefore it is nilpotent. If T 2

2 6= T 1
1, then Equation (4.3) implies that T 2

2 = −T 1
1.
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In this case, we differentiate the component B22 in Equation (4.2) twice with respect
to x2′ and obtain T 1

1 = 0. Thus, as before, T is nilpotent.

Next we analyze the case T 1
2 6= 0. We use Equation (4.1) to express

DΓ11
1 = T 1

1−T 2
2

T 1
2

DΓ12
1 + T 2

1
T 1

2

DΓ22
1, DΓ11

2 = T 2
1

T 1
2

DΓ12
1,

DΓ12
2 = T 2

1
T 1

2

DΓ22
1, DΓ22

2 = DΓ12
1 − T 1

1−T 2
2

T 1
2

DΓ22
1 .

Considering the component B̃11 in Equation (4.2),

B̃11 =
1

6
(T 1

1 − T 2
2) · (T 1

1 + T 2
2) · ((T 1

1 − T 2
2)2 + 4T 1

2T
2

1),

we analyze separately the vanishing of each one of the three factors in B̃11.
Assume that T 2

2 = T 1
1. In this case, component B̃12 in Equation (4.2) reduces

to B̃12 = 8
3T

1
2(T 2

1)2T 1
1; since we are assuming that T 1

2 6= 0, then either T 2
1 = 0

or T 2
1 6= 0 and T 1

1 = 0. If T 2
1 = 0, the only non-zero component of the Bach

tensor is given by B22 = −(T 1
2)2(T 1

1)2(3(T 1
1)2x2

1′ + Φ11), from where it follows
that T 1

1 = 0 and hence T is determined by T∂x2 = T 1
2∂x1 and is nilpotent. If

T 2
1 6= 0 and T 1

1 = 0, then we differentiate the component B12 in Equation (4.2)
with respect to x1′ and x2′ to get T 1

2T
2

1 = 0, which is not possible since both T 1
2

and T 2
1 are non-null.

Suppose now that T 2
2 = −T 1

1. In this case, we differentiate the component
B22 in Equation (4.2) twice with respect to x1′ and as a consequence we obtain
T 1

2(T 1
2T

2
1 + (T 1

1)2) = 0; since we are assuming T 1
2 6= 0, it follows that T 2

1 =

− (T 1
1)2

T 1
2

. Thus, the (1,1)-tensor field T is given by T∂x1 = T 1
1∂x1 −

(T 1
1)2

T 1
2
∂x2 and

T∂x2 = T 1
2∂x1 − T 1

1∂x2 , and therefore it is nilpotent as well.
Finally, suppose that (T 1

1 − T 2
2)2 + 4T 1

2T
2

1 = 0; since T 1
2 6= 0, this is

equivalent to T 2
1 = − (T 1

1−T 2
2)2

4T 1
2

. Now, we differentiate the component B22 in
Equation (4.2) twice with respect to x1′ to obtain T 1

2(T 1
1 + T 2

2) = 0. Thus,
we have that T 2

2 = −T 1
1 and T is given by T∂x1 = T 1

1∂x1 −
(T 1

1)2

T 1
2
∂x2 and

T∂x2 = T 1
2∂x1 − T 1

1∂x2 , which again implies that T is nilpotent.

To conclude the proof we show the “only if” part. If T is a multiple of the identity,
then (T ∗Σ, gD,Φ,T ) is self-dual by Theorem 1.24 and therefore it has vanishing Bach
tensor. Thus, we suppose T is parallel and nilpotent and, in this case, we can choose a
system of coordinates (x1, x2) such that T is determined by T∂x1 = ∂x2 and T∂x2 =
0. Hence, examining Equation (4.2), clearly B̃ = 0 and, since d = t = 0, one easily
checks that B11 = B12 = B22 = 0, showing that the Bach tensor of (T ∗Σ, gD,Φ,T )
vanishes.
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4.1 Bach-flat Riemannian extensions determined by a parallel tensor field

Remark 4.2. We emphasize that even though the Bach tensor of the metrics gD,Φ,T
depends on the choice of Φ (as shown in the proof of Theorem 4.1), the existence
of Bach-flat metrics in Theorem 4.1 is independent of the symmetric (0, 2)-tensor
field Φ, thus providing an infinite family of examples for each initial data (Σ, D, T ).
Moreover, note that the metrics gD,Φ,T are generically non-isometric for different
deformation tensor fields Φ.

The Bach-flat modified Riemannian extensions in Theorem 4.1 obtained from a
(1, 1)-tensor field of the form T = c Id are not of interest for our purposes since they
all are half conformally flat (cf. Theorem 1.24). Hence, in what follows we focus
on the case when T is a parallel nilpotent (1, 1)-tensor field and refer to gD,Φ,T as a
nilpotent Riemannian extension.

Remark 4.3. The nilpotent Riemannian extensions to be considered in what remains
of this chapter are those induced by a parallel nilpotent (1,1)-tensor field T on an
affine surface (Σ, D). In this case, there exist suitable coordinates (x1, x2) where
T∂x1 = ∂x2 and T∂x2 = 0, and it follows from Equation (4.1) that the Christoffel
symbols of D satisfy

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

A straightforward calculation shows that the Ricci tensor satisfies

ρD =

(
∂x2

DΓ11
2 − ∂x1DΓ11

1 ∂x2
DΓ11

1

−∂x2DΓ11
1 0

)
.

Hence, ρDs is either zero or of rank one and one easily gets that ρDs is recurrent, i.e.,
DρDs = η ⊗ ρDs , with recurrence one-form

η = {∂x1 ln ρDs (∂x1 , ∂x1)− 2DΓ11
1}dx1 + ∂x2 ln ρDs (∂x1 , ∂x1)dx2 (4.4)

(see also Theorem 5.1–(iii)).
Moreover, in the special case that the Ricci tensor is symmetric (ρDsk = 0 or,

equivalently, ∂x2DΓ11
1 = 0), work of Wong [104] shows that ρD is recurrent and of

rank one if and only if there exist local coordinates where the only non-zero Christof-
fel symbol is DΓ11

2(x1, x2). Furthermore, in this case one has

ρD = ∂x2
DΓ11

2(x1, x2)dx1 ⊗ dx1

and DρD = ω ⊗ ρD, where the recurrence one-form is given by

ω = (∂x1 ln ρD11)dx1 + (∂x2 ln ρD11)dx2

=
∂x1∂x2

DΓ11
2

∂x2
DΓ11

2
dx1 +

∂x2∂x2
DΓ11

2

∂x2
DΓ11

2
dx2 .

(4.5)
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Bach-flat isotropic gradient Ricci solitons

4.2 Bach-flat gradient Ricci solitons

Let Φ be a symmetric (0, 2)-tensor field on (Σ, D, T ). One uses the nilpotent struc-
ture T to construct an associated symmetric (0, 2)-tensor field Φ̂ given by Φ̂(X,Y )
= Φ(TX, TY ), for all vector fields X,Y on Σ.

Further, proceeding as in Lemma 5.4, let (x1, x2) be local coordinates where
T∂x1 = ∂x2 , T∂x2 = 0 (just interchanging the order of the coordinates in Asser-
tion (i) of Lemma 5.4). Setting Φ = Φijdx

i ⊗ dxj one has that Φ̂ expresses as
Φ̂ = Φ̂ijdx

i ⊗ dxj = Φ22dx
1 ⊗ dx1.

4.2.1 Einstein nilpotent Riemannian extensions

Riemannian extensions gD,Φ,T with T = c Id are Einstein if and only if the deforma-
tion tensor Φ is given by the symmetric part of the Ricci tensor (cf. Theorem 1.23).
In the nilpotent case (T 2 = 0) one has:

Theorem 4.4. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpo-
tent (1, 1)-tensor field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Then
(T ∗Σ, gD,Φ,T ) is Einstein (indeed, Ricci-flat) if and only if Φ̂ = −2ρDs .

Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and
consider the induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. A straightforward calcu-
lation shows that the Ricci tensor of any nilpotent Riemannian extension gD,Φ,T is
determined by

ρ(∂x1 , ∂x1) = Φ(∂x2 , ∂x2) + 2ρDs (∂x1 , ∂x1),

the other components being zero. Hence the Ricci operator is nilpotent and gD,Φ,T
has zero scalar curvature.

Moreover, the Ricci tensor vanishes if and only if Φ(∂x2 , ∂x2)+2ρDs (∂x1 , ∂x1) =
0. The result now follows.

Remark 4.5. The Weyl tensor of a pseudo-Riemannian manifold is harmonic if and
only if div4W vanishes. Let (Σ, D, T ) be an affine surface equipped with a parallel
nilpotent (1, 1)-tensor field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let
(x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and consider the
induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. A straightforward calculation shows
that the divergence of the Weyl tensor of (T ∗Σ, gD,Φ,T ) is given by

2(div4W )(∂x1 , ∂x2 , ∂x1) = {∂x2 Φ(∂x2 , ∂x2) + 2∂x2 ρ
D
s (∂x1 , ∂x1)},

the other components being zero. Hence (T ∗Σ, gD,Φ,T ) has harmonic Weyl tensor
if and only if D̂Φ = −2 η̂ ⊗ ρDs , where η̂(X) = η(TX), η being the recurrence
one-form given in Equation (4.4) and D̂Φ(X,Y ;Z) = DΦ(TX, TY ;TZ).
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4.2.2 Gradient Ricci solitons on nilpotent Riemannian extensions

Recall from Theorem 1.27 that the affine gradient Ricci soliton equation determines
the potential function of any self-dual gradient Ricci soliton which is not locally con-
formally flat, independently of the deformation tensor Φ. The next theorem shows
that, in contrast with the previous situation, for any h ∈ C∞(Σ) with dh(ker(T )) =
0, one may use the symmetric (0, 2)-tensor field HesDh +2ρDs to determine a deforma-
tion tensor field Φ so that the resulting nilpotent Riemannian extension is a Bach-flat
steady gradient Ricci soliton with potential function f = h ◦ π.

Theorem 4.6. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let Φ be a symmetric (0, 2)-tensor field on Σ. Let h ∈ C∞(Σ)
be a smooth function. Then (T ∗Σ, gD,Φ,T , f = h ◦ π) is a Bach-flat gradient Ricci
soliton if and only if dh(ker(T )) = 0 and

Φ̂ = −HesDh −2ρDs . (4.6)

Moreover the soliton is steady and isotropic.

Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and
consider the induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. Setting f = h ◦ π, one
has that Hesf (∂x1 , ∂x1′ ) + ρ(∂x1 , ∂x1′ ) = λg(∂x1 , ∂x1′ ) leads to λ = 0, which shows
that the soliton is steady. A straightforward calculation shows that the remaining
non-zero terms in the gradient Ricci soliton equation are given by

Hesf (∂x2 , ∂x2) + ρ(∂x2 , ∂x2) = ∂x2∂x2h,

Hesf (∂x1 , ∂x2) + ρ(∂x1 , ∂x2) = ∂x1∂x2h− DΓ11
1∂x2h,

Hesf (∂x1 , ∂x1) + ρ(∂x1 , ∂x1) = x2′ ∂x2h− DΓ11
2 ∂x2h+ ∂x1∂x1h− DΓ11

1∂x1h

+ Φ22 + 2∂x2
DΓ11

2 − 2∂x1
DΓ11

1 .

It immediately follows from the equation (Hesf +ρ)(∂x1 , ∂x1) = 0 that ∂x2h = 0,
which shows that dh(ker(T )) = 0. The only remaining equation now becomes

Hesf (∂x1 , ∂x1) + ρ(∂x1 , ∂x1)

= ∂x1∂x1h− DΓ11
1∂x1h+ Φ22 + 2∂x2

DΓ11
2 − 2∂x1

DΓ11
1

= Φ(∂x2 , ∂x2) + HesDh (∂x1 , ∂x1) + 2ρDs (∂x1 , ∂x1),

from which Equation (4.6) follows. Moreover, it also follows from the form of the
potential function that ∇f = h′(x1)∂x1′ , and thus ‖∇f‖2 = 0 (equivalently, the
level hypersurfaces of the potential function are degenerate submanifolds of T ∗Σ),
which shows that the soliton is isotropic.

123



Bach-flat isotropic gradient Ricci solitons

Remark 4.7. The potential functions of the gradient Ricci solitons in Theorem 4.6
are of the form f = h ◦ π for some h ∈ C∞(Σ). Next we show that this is indeed the
case if the Ricci tensor of (Σ, D) is non-symmetric.

We consider (T ∗Σ, gD,Φ,T , f) a gradient Ricci soliton with potential function
f ∈ C∞(T ∗Σ). Take local coordinates (x1, x2, x1′ , x2′) on T ∗Σ as in the proof of
Theorem 4.6. Since Hesf (∂xi′ , ∂xj′ ) = ∂xi′∂xj′f(x1, x2, x1′ , x2′), it follows from
the expression of the Ricci tensor in Theorem 4.4 and the metric tensor (1.19), that
the potential function is determined by f = ιX + h ◦ π, for some h ∈ C∞(Σ) and
some vector field X on Σ, where ιX is the evaluation map acting on X .

Further set X = A(x1, x2)∂x1 + B(x1, x2)∂x2 in the local coordinates (x1, x2)
above, for some A,B ∈ C∞(Σ). Then Hesf (∂x2 , ∂x1′ ) = ∂x2A(x1, x2), from where
it follows that X = A(x1)∂x1 + B(x1, x2)∂x2 . Considering Hesf (∂x2 , ∂x2′ ) =

−A′′(x1) + ∂x2B(x1, x2), one has that X = A(x1)∂x1 + (P (x1) + x2A′(x1))∂x2
for some smooth function P (x1). Next the component

Hesf (∂x1 , ∂x2′ ) = A(x1)DΓ11
2 − x2′A(x1)

+DΓ11
1(P (x1) + x2A′(x1)) + P ′(x1) + x2A′′(x1)

shows that A = 0 and it reduces to Hesf (∂x1 , ∂x2′ ) = P ′(x1) + P (x1)DΓ11
1. A

solution P (x1) of the equation P ′(x1)+P (x1)DΓ11
1 = 0 either vanishes identically

(and hence X = 0) or it is nowhere zero, in which case ∂x2DΓ11
1 = 0 (see the

proof of Theorem 4.13). In the latter case Remark 4.3 shows that the Ricci tensor
of (Σ, D) is symmetric and thus recurrent of rank one. Theorem 4.6 describes all
possible gradient Ricci solitons on (T ∗Σ, gD,Φ,T ) whenever ρDsk is non-zero.

Remark 4.8. The tensor field Dijk = −2 div4Wijk +Wijk`∇`f introduced in [36]
plays an essential role in analyzing the geometry of Bach-flat gradient Ricci solitons.
Local conformal flatness in [34, 36] follows from D = 0, which is obtained under
some natural assumptions.

Gradient Ricci solitons in Theorem 4.6 satisfy ∇f = h′(x1)∂x1′ . Therefore, a
straightforward calculation shows that D is completely determined by

D121 = −2h′(x1)∂x2
DΓ11

1(x1, x2),

the other components being zero. Hence it follows from Remark 4.3 that the tensor
field D vanishes if and only if the Ricci tensor ρD is symmetric. However Theo-
rem 4.9 shows that (T ∗Σ, gD,Φ,T ) is never locally conformally flat.

4.3 Half conformally flat nilpotent Riemannian extensions

The existence of a null distribution V on a four-dimensional manifold (M, g) of
neutral signature defines a natural orientation on M : the one which, for any basis
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{u, v} of V, makes the bivector u ∧ v self-dual (see [49]). We consider on T ∗M
the orientation which agrees with V = ker(π∗), and thus self-duality and anti-self-
duality are not interchangeable. The following result shows that they are essentially
different for nilpotent Riemannian extensions.

Theorem 4.9. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T . Then

(i) (T ∗Σ, gD,Φ,T ) is never self-dual for any deformation tensor field Φ.

(ii) If (T ∗Σ, gD,Φ,T ) is anti-self-dual, then D is either a flat connection or (Σ, D)
is recurrent with symmetric Ricci tensor of rank one.

In the latter case there exist local coordinates (u1, u2) where the only non-
zero Christoffel symbol is uΓ11

2 and the tensor field T is given by T∂u1 =
∂u2 , T∂u2 = 0. Moreover, (T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if the
symmetric (0, 2)-tensor field Φ satisfies the equations:

D̂Φ = −2ω̂ ⊗ ρD,

0 = 1
2 Φ̂⊗ Φ̂(∂x1 , ∂x1 , ∂x1 , ∂x1) + 2(Φ̂⊗ ρD)(∂x1 , ∂x1 , ∂x1 , ∂x1)

+D2Φ(∂x1 , ∂x1 ;T∂x1 , T∂x1) +D2Φ(T∂x1 , T∂x1 ; ∂x1 , ∂x1)

− 2D2Φ(∂x1 , T∂x1 ;T∂x1 , ∂x1),

(4.7)

where D̂Φ(X,Y, Z) = DΦ(TX, TY ;TZ), ω is the recurrence one-form given
by DρD = ω ⊗ ρD, and ω̂(X) = ω(TX).

Proof. A direct computation using the expression of the anti-self-dual curvature op-
erator of any four-dimensional Walker metric obtained in [51] shows that, for any
nilpotent Riemannian extension gD,Φ,T , W− takes the form

W− =
1

2

 −1 0 1
0 0 0
−1 0 1

 , (4.8)

thus showing that the anti-self-dual Weyl curvature operator W− is nilpotent and
hence (T ∗Σ, gD,Φ,T ) is never self-dual, which proves Assertion (i).

Next we show Assertion (ii). As a matter of notation we write ∂xsf = fs,
∂xr∂xsf = frs. Let (M, g) be a four-dimensional Walker metric and set the met-
ric components g11 = a, g12 = c and g22 = b, where gij are functions of the Walker
coordinates (x1, x2, x1′ , x2′). Then the self-dual Weyl curvature operator takes the
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form (see [51])

W+ =

 W+
11 W+

12 W+
11 + τ

12

−W+
12

τ
6 −W+

12

−W+
11 − τ

12 −W+
12 −W+

11 − τ
6

 , (4.9)

where

W+
11 = 1

12(6ca1b2 − 6a1b1′ − 6ba1c2 + 12a1c2′ − 6ca2b1 + 6a2b2′

+ 6ba2c1 + 6a1′b1 − 6a2′b2 − 12a2′c1 + 6ab1c2 − 6ab2c1

+ 12b2c1′ − 12b1′c2 − a11 − 12c2a11 − 12bca12 + 24ca12′

− 3b2a22 + 12ba22′ − 12a2′2′ − 3a2b11 + 12ab11′ − b22

− 12b1′1′ + 12acc11 − 2c12 + 6abc12 − 24cc11′ − 12ac12′

− 12bc21′ + 24c1′2′),

(4.10)

and

W+
12 = 1

4(−2ca11 − ba12 + 2a12′ + ab12 − 2b21′ + ac11 − 2cc12

− 2c11′ − bc22 + 2c22′) .
(4.11)

Since any anti-self-dual metric is Bach-flat, we proceed as in the proof of Theo-
rem 4.1 considering local coordinates (x1, x2) on the surface Σ such that T is deter-
mined by T∂x1 = ∂x2 and T∂x2 = 0. Since T is parallel, the Christoffel symbols
must satisfy:

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

Next, we analyze the self-dual Weyl curvature operator, which is completely deter-
mined by the scalar curvature and its components W+

11 and W+
12 already described

in Equations (4.10) and (4.11). The scalar curvature is zero by Theorem 4.4, and
W+

12 = −2∂x2
DΓ11

1, from where it follows that the Ricci tensor ρD is symmetric
of rank one and recurrent (see Remark 4.3). Take local coordinates (u1, u2), as in
Remark 4.3, so that the only non-zero Christoffel symbol is uΓ11

2 and T∂u1 = ∂u2 ,
T∂u2 = 0. Finally, we compute the component W+

11 given by Equation (4.10) in the
coordinates (u1, u2, u1′ , u2′) of T ∗Σ, obtaining

W+
11 = (∂x2Φ22 + 2∂x2∂x2

uΓ11
2)u2′ − 1

2(Φ22)2 − 2Φ22∂x2
uΓ11

2

− ∂x2Φ22
uΓ11

2 + 2∂x1∂x2Φ12 − ∂x2∂x2Φ11 − ∂x1∂x1Φ22 .

Thus (T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if
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∂x2Φ22 + 2∂x2∂x2
uΓ11

2 = 0,

1
2(Φ22)2 + 2Φ22∂x2

uΓ11
2 + ∂x2Φ22

uΓ11
2

= 2∂x1∂x2Φ12 − ∂x2∂x2Φ11 − ∂x1∂x1Φ22,

from where Equation (4.7) follows.

4.3.1 Anti-self-dual gradient Ricci solitons

Self-dual gradient Ricci solitons which are not locally conformally flat are described
in Theorem 1.27. In contrast, no explicit examples of strictly anti-self-dual gradient
Ricci solitons were previously reported. In this section we use nilpotent Riemannian
extensions to construct anti-self-dual isotropic gradient Ricci solitons. In this case,
Theorem 4.9 shows that (Σ, D) must have symmetric Ricci tensor.

Proposition 4.10. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci ten-
sor equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field Φ. Then (T ∗Σ, gD,Φ,T ) is anti-self-dual if and only if ω̂ = 0 and
Φ̂ = 0, where ω is the recurrence one-form given in Equation (4.5).

Proof. If the Ricci tensor ρD is symmetric of rank one and Φ is parallel, then the
equations in Theorem 4.9 reduce to ω̂ = 0 and Φ̂ = 0, which proves the result. If
(Σ, D) is a flat surface then a straightforward calculation shows that anti-self-duality
is equivalent to Φ̂ = 0, being Φ a parallel tensor.

Since the deformation tensor Φ of any gradient Ricci soliton in Theorem 4.6 must
satisfy Φ̂ = −HesDh −2ρDs , the condition Φ̂ = 0 in the previous proposition restricts
the consideration of Ricci solitons on (T ∗Σ, gD,Φ,T ) to those originated by affine
gradient Ricci solitons on (Σ, D).

Proposition 4.11. Let (Σ, D, T ) be an affine surface equipped with a parallel nilpo-
tent (1, 1)-tensor field T and let h ∈ C∞(Σ). Then

(i) (Σ, D, T, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only
if (T ∗Σ, g

D,Φ̂,T
, f = h ◦π) is a Bach-flat steady gradient Ricci soliton for any

symmetric (0, 2)-tensor field Φ.

(ii) (Σ, D, T, h) is a non-flat affine gradient Ricci soliton with dh(ker(T )) = 0 if
and only if the recurrence one-form η given in Equation (4.4) satisfies η̂ = 0.
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Proof. Since T is nilpotent, Φ̂(TX, TY ) = 0 for any (0, 2)-tensor field Φ. Hence
Equation (4.6) shows that (T ∗Σ, g

D,Φ̂,T
, f = h ◦ π) is a gradient Ricci soliton if and

only if (Σ, D, T, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0, which
shows Assertion (i). Next take local coordinates (x1, x2) on Σ so that T∂x1 = ∂x2 ,
T∂x2 = 0. Since ρDs = (∂x2

DΓ11
2 − ∂x1DΓ11

1)dx1 ⊗ dx1 (see Remark 4.3), one
has

(HesDh +2ρDs )(∂x2 , ∂x2) = ∂x2∂x2h .

Thus h(x1, x2) = x2P (x1) +Q(x1) for some P,Q ∈ C∞(Σ). Hence dh(ker(T )) =
0 holds if and only if P = 0. Since h(x1, x2) = Q(x1) one has that

(HesDh +2ρDs )(∂x1 , ∂x2) = 0,

and the only remaining equation is

0 = (HesDh +2ρDs )(∂x1 , ∂x1) = Q′′ + 2(∂x2
DΓ11

2 − ∂x1DΓ11
1)

= Q′′ + 2ρD(∂x1 , ∂x1) .

Therefore, the integrability condition becomes ∂x2ρD(∂x1 , ∂x1) = 0.
Hence, it follows from Equation (4.4) that (Σ, D, T, h) is an affine gradient Ricci

soliton with dh(ker(T )) = 0 if and only if the symmetric part of the Ricci tensor ρDs
is recurrent with recurrence one-form η satisfying η(ker(T )) = 0. Assertion (ii) now
follows.

A direct application of previous propositions gives the desired examples.

Theorem 4.12. Let (Σ, D, T,Φ) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field Φ.

(i) (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only
if (T ∗Σ, g

D,Φ̂,T
, f = h ◦ π) is an anti-self-dual steady gradient Ricci soliton

which is not locally conformally flat.

(ii) (Σ, D, h) is an affine gradient Ricci soliton with dh(ker(T )) = 0 if and only if
there exist local coordinates (u1, u2) on Σ so that the only non-zero Christoffel
symbol is given by uΓ11

2 = P (u1)+u2Q(u1) and the potential function h(u1)
is determined by h′′(u1) = −2Q(u1), for any P,Q ∈ C∞(Σ).

Proof. (T ∗Σ, g
D,Φ̂,T

, f = h ◦ π) is a gradient Ricci soliton by Proposition 4.11–
(i). Anti-self-duality now follows from Proposition 4.10 and Proposition 4.11–(ii),
showing Assertion (i).

Assertion (ii) follows from Proposition 4.11–(ii) and the expression of the recur-
rence form ω in Equation (4.5). Take local coordinates (u1, u2) on Σ as in the proof
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of Proposition 4.11–(ii). Then it follows from Equation (4.5) that ω̂ = 0 if and only
if ∂x2∂x2uΓ11

2 = 0. Thus

uΓ11
2(u1, u2) = P (u1) + u2Q(u1)

for some P,Q ∈ C∞(Σ) and h′′(u1) = −2Q(u1).

4.4 Conformally Einstein nilpotent Riemannian extensions

Since nilpotent Riemannian extensions are not weakly-generic (see the expression of
W− in the proof of Theorem 4.9), we will analyze the conformally Einstein Equa-
tion (1.6):

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0,

seeking for solutions on nilpotent Riemannian extensions (T ∗Σ, gD,Φ,T ).

Theorem 4.13. Let (Σ, D, T ) be a torsion free affine surface equipped with a parallel
nilpotent (1, 1)-tensor field T . Then any solution of Equation (1.6) is of the form
ϕ = ιX+φ◦π for some vector fieldX on Σ such thatX ∈ ker(T ) and tr(DX) = 0.

Moreover (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if one of the follow-
ing holds:

(i) The conformally Einstein Equation (1.6) admits a solution ϕ = φ ◦ π for some
φ ∈ C∞(Σ) with dφ(ker(T )) = 0, and the deformation tensor Φ is determined
by φ Φ̂ + 2(HesDφ +φ ρDs ) = 0.

(ii) The conformally Einstein Equation (1.6) admits a solution ϕ = ιX + φ ◦ π
for some φ ∈ C∞(Σ) and some non-zero vector field X on Σ such that X ∈
ker(T ) and tr(DX) = 0.

In this case, the Ricci tensor ρD is symmetric of rank one and recurrent. More-
over there are local coordinates (u1, u2) on Σ so that

ϕ(u1, u2, u1′ , u2′) = κu2′ + φ(u1, u2)

is a solution of Equation (1.6) if and only if

dφ(T∂x1) = µ
2 Φ(T∂x1 , T∂x1),

HesDφ (∂x1 , ∂x1) + φ ρD(∂x1 , ∂x1)

= −1
2(φ+ 2µ uΓ11

2)Φ(T∂x1 , T∂x1)

+ µ
2

{
2(D∂x1

Φ)(T∂x1 , ∂x1)− (DT∂x1
Φ)(∂x1 , ∂x1)

}
.
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Proof. Let (x1, x2) be local coordinates on Σ so that T∂x1 = ∂x2 , T∂x2 = 0, and
consider the induced coordinates (x1, x2, x1′ , x2′) on T ∗Σ. Since T is parallel we
obtain directly from Equation (4.1) that

DΓ12
1 = 0, DΓ12

2 = DΓ11
1, DΓ22

1 = 0, DΓ22
2 = 0 .

In order to analyze the conformally Einstein Equation (1.6) consider the symmet-
ric (0, 2)-tensor field E = 2 Hesϕ +ϕρ − 1

4{2∆ϕ + ϕ τ}g and set E = 0. Let
Eij = E(∂xi , ∂xj ) and let ϕ ∈ C∞(T ∗Σ) be a solution of Equation (1.6). Then one
computes

E33 = 2∂x1′∂x1′ϕ, E34 = 2∂x1′∂x2′ϕ, E44 = 2∂x2′∂x2′ϕ,

to show that any solution of Equation (1.6) must be of the form

ϕ(x1, x2, x1′ , x2′) = A(x1, x2)x1′ +B(x1, x2)x2′ + ψ(x1, x2), (4.12)

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2).
This shows that any solution of the conformally Einstein equation on (T ∗Σ, gD,Φ,T )
is of the form ϕ = ιX + ψ ◦ π, where ιX is the evaluation of a vector field X =
A∂x1 +B∂x2 on Σ, ψ ∈ C∞(Σ) and π : T ∗Σ→ Σ is the projection.

Now, the conformally Einstein condition given in Equation (1.6) can be expressed
in matrix form as follows:

(Eij) =


E11 E12 ∂x1A− ∂x2B 2(DΓ11

2A+ DΓ11
1B + ∂x1B −Ax2′)

∗ E22 2∂x2A −∂x1A+ ∂x2B

∗ ∗ 0 0

∗ ∗ ∗ 0

 (4.13)

where positions with ∗ are not written since the matrix is symmetric, and where

E11 = −(∂x1A− ∂x2B − 4DΓ11
1A)x2

2′

+{AΦ22 + 2(∂x1∂x1A− DΓ11
2∂x2A

+ DΓ11
1∂x2B +A∂x2

DΓ11
2 −B∂x2DΓ11

1)}x1′

−{BΦ22 + 2AΦ12 − 2(∂x1∂x1B + DΓ11
2∂x1A

− DΓ11
1∂x1B + (∂x1

DΓ11
2 − 2DΓ11

1DΓ11
2)A

+ (∂x1
DΓ11

1 − 2(DΓ11
1)2)B + ∂x2ψ)}x2′

+2∂x2Ax1′x2′

−(∂x1A+ ∂x2B)Φ11 + 2(DΓ11
2A+ DΓ11

1B)Φ12

+(2DΓ11
2B + ψ)Φ22 −A∂x1Φ11 +B∂x2Φ11 − 2B∂x1Φ12 + 2∂x1∂x1ψ

−2DΓ11
1∂x1ψ − 2DΓ11

2∂x2ψ − 2(∂x1
DΓ11

1 − ∂x2DΓ11
2)ψ,
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E12 = 2(∂x1∂x2A− DΓ11
1∂x2A+A∂x2

DΓ11
1)x1′

+2(∂x1∂x2B + DΓ11
1∂x1A+A∂x2

DΓ11
2)x2′

−(∂x1A+ ∂x2B)Φ12 + 2DΓ11
1BΦ22 −A∂x2Φ11 −B∂x1Φ22

+2∂x1∂x2ψ − 2DΓ11
1∂x2ψ,

E22 = 2∂x2∂x2Ax1′ + 2(∂x2∂x2B + 2A∂x2
DΓ11

1)x2′

−(∂x1A+ ∂x2B + 2DΓ11
1A)Φ22 − 2A∂x2Φ12

+A∂x1Φ22 −B∂x2Φ22 + 2∂x2∂x2ψ .

First, we use the component E14 = 2(DΓ11
2A + DΓ11

1B + ∂x1B − Ax2′) in
Equation (4.13); note that ∂x2′E14 = −2A, and therefore A(x1, x2) = 0, which
shows that X ∈ ker(T ). Now component E13 in Equation (4.13) gives ∂x2B = 0,
which implies B(x1, x2) = P (x1) for some smooth function P depending only on
the coordinate x1, i.e., the vector field X = B∂x2 satisfies tr(DX) = 0.

At this point, the conformal function ϕ has the coordinate expression

ϕ(x1, x2, x1′ , x2′) = P (x1)x2′ + ψ(x1, x2)

and the possible non-zero components in Equation (4.13) are E11, E12, E22 and E14.
Considering the component E14 = 2(P ′(x1) +DΓ11

1(x1, x2)P (x1)), we distinguish
two cases depending on whether the function P vanishes identically or not. Indeed,
if P (x1) is a solution of the equation E14 = 0, then

∂x1
(
P (x1)e

∫
DΓ11

1(x1,x2)dx1
)

= e
∫
DΓ11

1(x1,x2)dx1
{
P ′(x1) + P (x1)DΓ11

1(x1, x2)
}

= 0,

which shows that
P (x1)e

∫
DΓ11

1(x1,x2)dx1 = Q(x2),

for some smooth functionQ(x2). Now, if the functionQ(x2) vanishes at some point,
then P (x1) = 0 at each point. Otherwise, if Q(x2) 6= 0 at each point, so is P (x1).

First, suppose that P (x1) ≡ 0, and hence ϕ = ψ ◦π. In this case, component E22

in Equation (4.13) yields ∂x2∂x2ψ = 0, which implies ψ(x1, x2) = Q(x1)x2 +φ(x1)
for some smooth functions Q and φ depending only on the coordinate x1. Now, the
only components in Equation (4.13) which could be non-null are

E11 = 2Qx2′ + (QΦ22 + 2Q′′ − 2DΓ11
1Q′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)Q)x2

+φΦ22 + 2φ′′ − 2DΓ11
1φ′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)φ− 2DΓ11
2Q,

E12 = 2(Q′ − DΓ11
1Q) .

131



Bach-flat isotropic gradient Ricci solitons

Now, ∂x2′E11 = 2Q, implies Q = 0, thus showing that dϕ(ker(T )) = 0. Then
E12 = 0 and the component E11 reduces to

E11 = φΦ22 + 2φ′′ − 2DΓ11
1φ′ − 2(∂x1

DΓ11
1 − ∂x2DΓ11

2)φ .

Since ϕ(x1, x2, x1′ , x2′) = φ(x1), φ must be non-null and we obtain that E11 = 0 is
equivalent to

Φ22 = − 2
φ

{
φ′′ − DΓ11

1φ′ − (∂x1
DΓ11

1 − ∂x2DΓ11
2)φ

}
= − 2

φ

{
HesDφ (∂x1 , ∂x1) + φ ρDs (∂x1 , ∂x1)

}
,

from where Assertion (i) is obtained.

Finally, we analyze the case in which the function P (x1) does not vanish identi-
cally. Since E14 = 2(P ′(x1) + DΓ11

1(x1, x2)P (x1)), we have ∂x2DΓ11
1 = 0. Now

it follows that the Ricci tensor ρD is symmetric of rank one and recurrent (see Re-
mark 4.3). Specialize the local coordinates (u1, u2) on Σ so that the only non-zero
Christoffel symbol of D is uΓ11

2(u1, u2) and T∂u1 = ∂u2 , T∂u2 = 0. Then any
solution of the conformally Einstein equation takes the form

ϕ(u1, u2, u1′ , u2′) = A(u1)u2′ + φ(u1, u2) .

Now, considering the component E41 of the conformally Einstein equation in the new
coordinates (u1, u2), one has E41 = 2A′(u1), which shows that ϕ(u1, u2, u1′ , u2′) =
µu2′ + φ(u1, u2) for some µ 6= 0. Considering now the component

E11 = (2∂x2φ− µΦ22)u2′ + 2∂x1∂x1φ− 2∂x2φ
uΓ11

2

+ 2φ∂x2
uΓ11

2 + φΦ22 + 2µΦ22
uΓ11

2 + µ∂x2Φ11 − 2µ∂x1Φ12,

it follows that the conformally Einstein equation reduces to

µΦ22 = 2∂x2φ,

(φ+ 2µ uΓ11
2)Φ22 = −2(HesDφ (∂u1 , ∂u1) + φρD(∂u1 , ∂u1))

+µ(2∂x1Φ12 − ∂x2Φ11),

from where Assertion (ii) is obtained.

4.5 Examples

4.5.1 Nilpotent Riemannian extensions with flat base

Let (Σ, D) be a flat torsion free affine surface. Take local coordinates on Σ so
that all Christoffel symbols vanish. Let T be a parallel nilpotent (1, 1)-tensor field.
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Since T is parallel, its components T j i are necessarily constant on the given coor-
dinates. Hence one may further specialize the local coordinates (x1, x2), by using a
linear transformation, so that T∂x1 = ∂x2 , T∂x2 = 0 and all the Christoffel sym-
bols DΓij

k remain identically zero. Now Theorem 4.1 shows that (T ∗Σ, gD,Φ,T ) is
Bach-flat for any symmetric (0, 2)-tensor field Φ on Σ. Moreover it follows from
Theorem 4.6 that (T ∗Σ, gD,Φ,T , f = h ◦ π) is a steady gradient Ricci soliton for
any h ∈ C∞(Σ) with dh ◦ T = 0 and any symmetric (0, 2)-tensor field Φ such
that Φ22(x1, x2) = −h′′(x1). Further note from Remark 4.8 that the steady gra-
dient Ricci soliton (T ∗Σ, gD,Φ,T , f = h ◦ π) satisfies D = 0. Moreover, since
Φ22 = −h′′(x1), one has that (T ∗Σ, gD,Φ,T ) is in the conformal class of an Ein-
stein metric (just considering the conformal metric ḡ = φ−2gD,Φ,T determined by
the equation φ′′(x1)− 1

2φ(x1)h′′(x1) = 0).

Remark 4.14. Set Σ = R2 with usual coordinates (x1, x2) and put T∂x1 = ∂x2 ,
T∂x2 = 0. For any smooth function h(x1) consider the deformation tensor Φ given
by Φ22(x1, x2) = −h′′(x1) (the other components being zero). Then, the non-zero
Christoffel symbols of gD,Φ,T are given by

Γ11
2 = −x2′ = −Γ12′

1′ , Γ11
2′ = −h′′(x1)x2′ , Γ12

2′ = −1

2
h(3)(x1) = −Γ22

1′ .

Hence a curve γ(t) = (x1(t), x2(t), x1′(t), x2′(t)) is a geodesic if and only if

ẍ1(t) = 0, ẍ2(t)− x2′(t) ẋ
1(t)2 = 0,

ẍ1′(t) + 2x2′(t) ẋ
1(t)ẋ2′(t) + 1

2 h
(3)(x1(t)) ẋ2(t)2 = 0,

ẍ2′(t)− h′′(x1(t))x2′(t) ẋ
1(t)2 − h(3)(x1(t)) ẋ1(t) ẋ2(t) = 0 .

Thus x1(t) = at+ b for some a, b ∈ R and

ẍ2(t)− a2 x2′(t) = 0,

ẍ2′(t)− h′′(at+ b) a2 x2′(t)− h(3)(at+ b) a ẋ2(t) = 0,

ẍ1′(t) + 2a x2′(t) ẋ2′(t) + 1
2 h

(3)(at+ b) ẋ2(t)2 = 0 .

Now the first two equations above are linear and thus x2(t) and x2′(t) are globally
defined. Finally, since ẍ1′(t) + 2a x2′(t) ẋ2′(t) + 1

2 h
(3)(at + b) ẋ2(t)2 = 0 is also

linear on x1′(t), one has that geodesics are globally defined.
Then it follows from Theorem 4.6 that (T ∗R2, gD,Φ,T , f = h ◦ π) is a geodesi-

cally complete steady gradient Ricci soliton, which is conformally Einstein by Theo-
rem 4.13.
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4.5.2 Nilpotent Riemannian extensions with non-recurrent base

Let (T ∗Σ, gD,Φ,T , f = h ◦ π) be a non-trivial Bach-flat steady gradient Ricci soliton
as in Theorem 4.6. Further assume that the Ricci tensor ρD is non-symmetric, i.e.,
ρDsk 6= 0 (equivalently, ∂x2DΓ11

1 6= 0 as shown in Remark 4.3). Then it follows from
Theorem 4.9 that (T ∗Σ, gD,Φ,T ) is not half conformally flat.

Theorem 4.13 shows that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if
there exists a positive φ ∈ C∞(Σ) with dφ ◦ T = 0 such that

φ Φ̂ + 2(HesDφ +φ ρDs ) = 0 .

Therefore, it follows from Theorem 4.6 that HesDh = 2
φ HesDφ , which means (2φ

′

φ −
h′)DΓ11

1 = 2φ
′′

φ − h
′′. Taking derivatives with respect to x2 and, since ∂x2DΓ11

1 6=
0, the equation above splits into

2φ′

φ
− h′ = 0 and

2φ′′

φ
− h′′ = 0,

which only admits constant solutions. Summarizing the above one has the following:
Let (Σ, D, T ) be an affine surface with non-symmetric Ricci tensor (i.e., ρDsk 6= 0).
Then any Bach-flat gradient Ricci soliton (T ∗Σ, gD,Φ,T , f = h ◦ π) is neither half
conformally flat nor conformally Einstein.
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Chapter 5

Parallel tensors on affine surfaces

Motivated by the results in Chapter 4, one is interested in the existence of affine
surfaces admitting a parallel tensor of type (1,1) which is nilpotent and their explicit
description. It is important to emphasize that any parallel tensor decomposes as an
scalar multiple of the identity plus a trace free part. In consequence, one can reduce
the problem and restrict the study to trace free parallel tensor fields.

We say that (Σ, D, T ) is a Kähler surface if T is a complex structure (T 2 = − Id)
and DT = 0. If the parallel tensor field is a para-complex structure (T 2 = Id), then
(Σ, D, T ) is called para-Kähler. Finally (Σ, D, T ) is said to be nilpotent Kähler if
T is a nilpotent parallel tensor field of type (1,1). Let (Σ, D) be an affine surface
with the skew-symmetric Ricci tensor ρDsk 6= 0. Then ρDsk defines a volume element.
Furthermore, ρDsk is recurrent, i.e., DρDsk = ω ⊗ ρDsk. The symmetric Ricci tensor is
not recurrent in general. We will prove the following result in Section 5.2.

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recur-
rent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is
recurrent.

(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and
recurrent.

Affine surfaces admitting a trace free parallel (1,1)-tensor field have appeared in
the literature in several contexts.

(1) Affine surfaces with parallel shape operator have been investigated in [69],
where it is shown that any such surface is either an equiaffine sphere or the
shape operator is two-step nilpotent, thus corresponding to Case (iii) above.

(2) Let (Σ, D) be an affine surface equipped with a parallel volume form Ω. Since
dΩ = 0 and DΩ = 0, there is a notion of symplectic sectional curvature
(see [56]).
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A symplectic surface (Σ, D,Ω) has zero symplectic sectional curvature if and
only if the Ω-Ricci operator Ω(RicΩ(X), Y ) = ρD(X,Y ) is a nilpotent Kähler
structure. Furthermore the symplectic sectional curvature is positive definite
(resp. negative definite) if and only if RicΩ is a Kähler (resp. para-Kähler)
structure [56].

This chapter is organized as follows. In section 5.1 we study the relation between
parallel tensors and the Ricci tensor as well as the dimension of the spaces of par-
allel tensors. The proof of the Theorem 5.1 is given in Section 5.2. In Section 5.3
we analyze the existence of parallel (1,1)-tensor fields on the Type A and Type B
homogeneous surfaces. In this chapter we report on work investigated in [30].

5.1 The space of parallel tensor fields on a surface

Let (Σ, D) be an affine surface and let (x1, x2) be a system of local coordinates on
Σ. Let T be a tensor field of type (1,1). Expand T = T ij∂xi ⊗ dxj . We say that T
is parallel if DT = 0. Let P(Σ, D) be the set of parallel tensors of type (1, 1) on
(Σ, D):

P(Σ, D) = {T ij : ∂xkT
i
j + DΓk`

i T `j − DΓkj
` T i` = 0, for all i, j, k} .

Let tr(T ) := T ii be the trace of the endomorphism. Let

P0(Σ, D) := {T ∈ P(Σ, D) : tr(T ) = 0}

be the space of trace free parallel tensors of type (1,1). If T ∈ P(Σ, D), tr(T ) is
constant and expressing T = 1

2 tr(T ) Id +(T − 1
2 tr(T ) Id) decomposes

P(Σ, D) = Id ·R⊕ P0(Σ, D) .

If 0 6= T ∈ P0(Σ, D), then the eigenvalues of T are {±λ} so tr(T 2) = 2λ2. If
2λ2 < 0 (resp. 2λ2 > 0), we can rescale T so T 2 = − Id (resp. T 2 = Id) and T
defines a Kähler (resp. para-Kähler) structure on Σ; the almost complex (resp. almost
para-complex) structure being integrable as Σ is a surface [44, 85]. Finally, if λ = 0,
then T is nilpotent and defines what we will call a nilpotent Kähler structure.

Lemma 5.2. If (Σ, D) is a connected affine surface, thenP(Σ, D) is a unital algebra
with dim(P(Σ, D)) ≤ 4. Let T ∈ P(Σ, D). The eigenvalues of T are constant on
Σ. If T vanishes at any point of Σ, then T vanishes identically.
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5.1 The space of parallel tensor fields on a surface

Proof. Let M2(F) be the unital algebra of 2 × 2 matrices with entries in a field F
and let M0

2 (F) ⊂ M2(F) be the linear subspace of trace free matrices. The sum and
product of parallel tensors of type (1,1) is again parallel. Since Id = (δij) is parallel,
P(Σ, D) is a unital algebra. Fix a point p ∈ Σ. Since Σ is connected, a parallel tensor
is defined by its value at a single point. Thus the map T → T (p) is a unital algebra
homomorphism which embeds P(Σ, D) into M2(R) relative to the coordinate basis.
Thus P(Σ, D) has dimension at most 4. Let T ∈ P(Σ, D). Since d{tr(T )} =
tr(DT ) = 0, tr(T ) is constant. By replacing T by T − 1

2 tr(T ) Id, we may assume
that T ∈ P0(Σ, D) is trace free. The eigenvalues of T are then {λ(p),−λ(p)} so
tr(T 2) = 2λ2(p). Since T 2 is parallel, this implies λ2(·) is constant and hence the
eigenvalues themselves are constant.

The symmetric Ricci tensor plays a crucial role. The proof of the following the-
orem will be obtained in this section after a case by case analysis.

Theorem 5.3. Let (Σ, D) be a simply connected affine surface.

(i) If dim(P0(Σ, D)) = 1, then exactly one of the following possibilities holds:

(a) (Σ, D) admits a Kähler structure and Rank(ρDs ) = 2.

(b) (Σ, D) admits a para-Kähler structure and Rank(ρDs ) = 2.

(c) (Σ, D) admits a nilpotent Kähler structure and Rank(ρDs ) = 1.

(ii) dim(P0(Σ, D)) 6= 2.

(iii) dim(P0(Σ, D)) = 3 if and only if ρDs = 0. This implies (Σ, D) admits Kähler,
para-Kähler, and nilpotent Kähler structures.

Generically, of course, dim(P0(Σ, D)) = 0. Furthermore, there exist examples
with Rank(ρDs ) = 1 (resp. Rank(ρDs ) = 2) where dim(P0(Σ, D)) = 0 as we shall
show in Remark 5.17 (resp. Remark 5.13). What is somewhat surprising is that the
existence of parallel (1, 1)-tensor fields is completely characterized by the geometry
of the symmetric part of the Ricci tensor ρDs .

Let T be a tensor of type (1,1) on a smooth surface Σ such that the eigenvalues
of T are constant; this is equivalent, of course, to assuming either that tr(T ) and
tr(T 2) are constant on Σ or that tr(T ) and det(T ) are constant on Σ. By subtracting
a suitable multiple of the identity from T , we can assume T is trace free. We have
the following useful observation.

Lemma 5.4. Let 0 6= T be a trace free tensor of type (1,1) on an affine surface Σ
with det(T ) ∈ {0,±1}.
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(i) If det(T ) = 0, we can choose local coordinates so T = ∂x1 ⊗ dx2.

(ii) If det(T ) = 1, we can choose local coordinates so T = ∂x2⊗dx1−∂x1⊗dx2.

(iii) If det(T ) = −1, we can choose local coordinates so T = ∂x1⊗dx1−∂x2⊗dx2.

Proof. Let 0 6= T be nilpotent. Let Y1 be a non-zero vector field which is defined
locally so that TY1 6= 0. Then Y2 := TY1 spans ker(T ). Choose local coordinates
(y1, y2) so that Y2 = ∂y2 . Then T∂y1 is a non-zero multiple of ∂y2 , i.e., T∂y1 =
f∂y2 . Let X1 = ∂y1 + g∂y2 and X2 = f∂y2 where g remains to be determined. Then
TX1 = X2. We have [X1, X2] = (∂y1f + g∂y2f − f∂y2g)∂y2 . Solve the ODE

∂y2g(y1, y2) = f−1{∂y1f + g∂y2f} with g(y1, 0) = 0 .

This ensures [X1, X2] = 0. Since {X1, X2} are linearly independent, we can choose
local coordinates (x1, x2) so ∂x1 = X1 and ∂x2 = X2. We then have T∂x1 = ∂x2
and T∂x2 = 0; Assertion (i) follows after interchanging the roles of x1 and x2.

If det(T ) = 1, then T 2 = − Id and T defines an almost complex structure. Since
Σ is a surface, the Nirenberg-Newlander Theorem [85] shows that we can choose
local coordinates so T∂x1 = ∂x2 and T∂x2 = −∂x1 . Assertion (ii) now follows.

Let det(T ) = −1. Then T 2 = Id and T defines an almost para-complex struc-
ture. Since we are in dimension 2, the para-complex structure is integrable and we can
choose local coordinates so T∂x1 = ∂x1 and T∂x2 = −∂x2 (see for example [44]).
Assertion (iii) follows.

The proof of Theorem 5.3 follows after a case by case analysis of the different
local forms in Lemma 5.4. First, we consider the existence of parallel tensor fields
on affine surfaces with skew-symmetric Ricci tensor. After that, we will analyze
nilpotent Kähler structures, Kähler structures and para-Kähler structures.

The case of skew-symmetric Ricci tensor

Lemma 5.5. Let (Σ, D) be an affine surface which is not flat.

(i) ρDs = 0 if and only if there is a coordinate atlas with locally defined ϕ so:

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
1 = ∂x1ϕ,

DΓ12
2 = 0, DΓ22

1 = ∂x2ϕ,
DΓ22

2 = ∂x1ϕ .
(5.1)

(ii) If Equation (5.1) holds, then ρD = −∂x1∂x1ϕdx1 ∧ dx2, and

P0(Σ, D) = span

{(
0 1

0 0

)
,

(
1 2ϕ

0 −1

)
,

(
−ϕ −ϕ2

1 ϕ

)}
.
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Proof. Suppose ρDs = 0. Fix a local basis {e1, e2} for TpΣ. Let σ(t) := expp(te2).
Extend e1 along σ to be parallel and let Ψ(s, t) := expσ(t)(se1(t)). This gives a
system of local coordinates where D∂t∂t|s=0 = 0, D∂t∂s|s=0 = 0, D∂s∂s = 0, i.e.,

DΓ22
1(0, x2) = 0, DΓ22

2(0, x2) = 0, DΓ12
1(0, x2) = 0,

DΓ12
2(0, x2) = 0, DΓ11

1(x1, x2) = 0, DΓ11
2(x1, x2) = 0 .

We have 0 = ρDs,11 = −(DΓ12
2)2 − ∂x1DΓ12

2 = 0. Since DΓ12
2(0, x2) = 0, this

ODE implies DΓ12
2 = 0. Setting ρDs,12 = 0 then yields ∂x1{DΓ12

1 − DΓ22
2} = 0.

Since DΓ12
1(0, x2) = 0 and DΓ22

2(0, x2) = 0, we conclude DΓ12
1 = DΓ22

2. Set-
ting ρDs,22 = 0 yields −∂x2DΓ22

2 + ∂x1
DΓ22

1 = 0. Consequently, DΓ22
2 = ∂x1ϕ

and DΓ22
1 = ∂x2ϕ for some smooth function ϕ. This yields the relations of Equa-

tion (5.1). Conversely, if Equation (5.1) holds, then a direct computation shows that
ρDs = 0 and that the three endomorphisms of Assertion (ii) are parallel. Since these
endomorphisms are linearly independent and dim(P0(Σ, D)) ≤ 3, Assertion (ii)
holds.

The case of nilpotent Kähler structures

Lemma 5.6. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a nilpotent Kähler structure, there is a coordinate atlas so

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
2 = 0, DΓ22

2 = DΓ12
1 . (5.2)

(ii) If Equation (5.2) holds, then ρDs = (∂x1
DΓ22

1 − ∂x2DΓ12
1) dx2 ⊗ dx2 and

T = ∂x1 ⊗ dx2 ∈ P0(Σ, D).

(iii) If Equation (5.2) holds and if dim(P0(Σ, D)) ≥ 2, then

DΓ12
1 = −∂x1ψ and DΓ22

1 = −∂x2ψ (5.3)

for some smooth function ψ.

(iv) If Equations (5.2) and (5.3) hold, then ρD = ∂x1∂x1ψ dx
1 ∧ dx2 and

P0(Σ, D) = span

{(
0 1

0 0

)
,

(
ψ −ψ2

1 −ψ

)
,

(
1 −2ψ

0 −1

)}
.

Proof. Let 0 6= T ∈ P0(Σ, D) be nilpotent. By Lemma 5.4, we may choose coordi-
nates so T = ∂x1 ⊗ dx2. Setting DT = 0 yields the following relations from which
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Equation (5.2) follows (see also [33]):

D∂x1
T = 0 :

(
−DΓ11

2 DΓ11
1 − DΓ12

2

0 DΓ11
2

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
−DΓ12

2 DΓ12
1 − DΓ22

2

0 DΓ12
2

)
=

(
0 0

0 0

)
.

Assume Equation (5.2) holds. A direct computation establishes Assertion (ii).
To prove Assertion (iii), assume in addition that dim(P0(Σ, D)) ≥ 2 and choose
S ∈ P0(Σ, D) so S and T are linearly independent. We must establish the relations
of Equation (5.3).

Case 1:
Suppose that S is nilpotent. Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
; ST =

(
0 S1

1

0 S2
1

)
.

Since ST ∈ P(Σ, D), tr(ST ) = S2
1 is constant. Thus S2

1 = c for c ∈ R and

S =

(
S1

1 S1
2

c −S1
1

)
.

If c = 0, then det(S) = −(S1
1)2 = 0 implies S1

1 = 0 so S = S1
2 T . Since S and

T are parallel, dS1
2 = 0 so S1

2 ∈ R and S and T are linearly dependent contrary
to our assumption. Thus c 6= 0 and we may rescale S to assume c = 1. Setting
det(S) = 0 yields S1

2 = −(S1
1)2 so

S =

(
S1

1 −(S1
1)2

1 −S1
1

)
.

We compute the covariant derivative DS = Sij;k∂xi ⊗ dxj ⊗ ∂xk , where the compo-
nents Sij;k = ∂xkS

i
j +DΓk`

iS`j −DΓkj
`Si` to get 0 = S2

2;1 = −DΓ12
1−∂x1S1

1

and 0 = S2
2;2 = −DΓ22

1 − ∂x2S1
1. This yields the additional relations given in

Equation (5.3).

Case 2:
Suppose that S is not nilpotent. The map S → S(p) is an algebra morphism

which embeds P(Σ, D) in M2(R). Consequently, if dim(P0(Σ, D)) = 3, then
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dim(P(Σ, D)) = 4 and P(Σ, D) contains a linearly independent nilpotent element
S ∈ P(Σ, D) and the argument given in Case 1 pertains. We therefore assume
dim(P(Σ, D)) = 3 and that any nilpotent element of P(Σ, D) is a constant multiple
of T . Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
and T =

(
0 1

0 0

)
.

We compute

ST =

(
0 S1

1

0 S2
1

)
.

As ST is parallel, tr(ST ) = S2
1 is constant so S2

1 = c for some constant c and

ST − c
2 Id =

(
− c

2 S1
1

0 c
2

)
, STS =

(
cS1

1 −(S1
1)2

c2 −cS1
1

)
.

Since dim(P0(Σ, D)) = 2, there must exist a non-trivial real dependence relation of
the form 0 = a1T + a2(ST − c

2 Id) + a3STS, i.e.,(
0 0

0 0

)
=

(
−1

2a2c+ a3cS
1

1 a1 + a2S
1

1 − a3(S1
1)2

a3c
2 1

2a2c− a3cS
1

1

)
.

If c 6= 0, the relation a3c
2 = 0 implies a3 = 0. The relation 1

2a2c− a3cS
1

1 = 0 then
implies a2 = 0. And then finally the relation a1 + a2S

1
1 − a3(S1

1)2 = 0 implies
a1 = 0. Thus c = 0 so we have

S =

(
S1

1 S1
2

0 −S1
1

)
, T =

(
0 1

0 0

)
.

Since the eigenvalues of S are constant, S1
1 is constant as well. If S1

1 = 0, then
DS = 0 implies S1

2 ∈ R and hence S and T are not linearly independent. Thus
we may assume S1

1 = 1. We set S1
2 = −2ψ. Setting DS = 0 then shows that

DΓ12
1 = −∂x1ψ and DΓ22

1 = −∂x2ψ which yields, as desired, Equation (5.3).
Assertion (iv) follows by a direct computation.

The case of Kähler structures

Lemma 5.7. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a Kähler structure, then there is a coordinate atlas so

DΓ11
1 = DΓ12

2 = −DΓ22
1, DΓ11

2 = −DΓ12
1 = −DΓ22

2 . (5.4)

141



Parallel tensors on affine surfaces

(ii) If Equation (5.4) holds, then

ρDs = (∂x2
DΓ11

2 − ∂x1DΓ11
1)

(
1 0

0 1

)
and

T =

(
0 −1

1 0

)
∈ P0(Σ, D) .

(iii) If Equation (5.4) holds and if dim(P0(Σ, D)) ≥ 2, there exists smooth ψ so

DΓ11
1 =

1

2
∂x2ψ and DΓ11

2 =
1

2
∂x1ψ . (5.5)

(iv) If Equations (5.4) and (5.5) hold, then

ρD =
1

2
(∂x1∂x1 + ∂x2∂x2)ψ dx1 ∧ dx2

and

P0(Σ, D) = span

{(
0 −1

1 0

)
,

(
cosψ − sinψ

− sinψ − cosψ

)
,(

sinψ cosψ

cosψ − sinψ

)}
.

Proof. Suppose T ∈ P0(Σ, D) satisfies T 2 = − Id. By Lemma 5.4, we can choose
local coordinates so T = ∂x2⊗dx1−∂x1⊗dx2. SettingDT = 0 yields the relations:

D∂x1
T = 0 :

(
DΓ11

2 + DΓ12
1 −DΓ11

1 + DΓ12
2

−DΓ11
1 + DΓ12

2 −DΓ11
2 − DΓ12

1

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
DΓ12

2 + DΓ22
1 −DΓ12

1 + DΓ22
2

−DΓ12
1 + DΓ22

2 −DΓ12
2 − DΓ22

1

)
=

(
0 0

0 0

)
.

These relations establish Equation (5.4). A direct computation establishes Asser-
tion (ii). Suppose dim(P(Σ, D)) ≥ 3. Choose S ∈ P0(Σ, D) to be linearly inde-
pendent of T . Express

S =

(
S1

1 S1
2

S2
1 −S1

1

)
, T =

(
0 −1

1 0

)
, S + εT =

(
S1

1 S1
2 − ε

S2
1 + ε −S1

1

)
.
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We have det(S+εT ) = ε2 +ε(S2
1−S1

2)−(S1
1)2−S2

1S
1

2. We use the quadratic
formula to solve the equation det(S + εT ) = 0 setting:

ε = 1
2

{
(S1

2 − S2
1)±

√
(S1

2 + S2
1)2 + 4(S1

1)2
}
.

Since S and T are assumed linearly independent, S + εT is a non-trivial nilpotent
element. We can then apply Lemma 5.6 and Assertion (ii) to see ρDs = 0 and derive
the relations of Equation (5.5). This proves Assertion (iii); Assertion (iv) follows by
a direct computation.

The case of para-Kähler structures

Lemma 5.8. Let (Σ, D) be an affine surface which is not flat.

(i) If (Σ, D) admits a para-Kähler structure, then there is a coordinate atlas so

DΓ11
2 = 0, DΓ12

1 = 0, DΓ12
2 = 0, DΓ22

1 = 0 . (5.6)

(ii) If Equation (5.6) holds, then

T =

(
1 0

0 −1

)
∈ P0(Σ, D)

and

ρDs = −1

2
(∂x2

DΓ11
1 + ∂x1

DΓ22
2)

(
0 1

1 0

)
.

(iii) If Equation (5.6) holds and if dim(P0(Σ, D)) ≥ 2, then there exists a locally
defined smooth function θ such that

DΓ11
1 = ∂x1θ and DΓ22

2 = −∂x2θ . (5.7)

(iv) If Equations (5.6) and (5.7) hold, then ρD = ∂x1∂x2θ dx
1 ∧ dx2 and

P0(Σ, D) = span

{(
1 0

0 −1

)
, e−θ

(
0 1

0 0

)
, eθ

(
0 0

1 0

)}
.

Proof. Let T ∈ P0(Σ, D) satisfy T 2 = Id. We apply Lemma 5.4 to see we may
choose local coordinates so T = ∂x1 ⊗ dx1 − ∂x2 ⊗ dx2. Setting DT = 0 yields the
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relations

D∂x1
T = 0 :

(
0 −2DΓ12

1

2DΓ11
2 0

)
=

(
0 0

0 0

)
,

D∂x2
T = 0 :

(
0 −2DΓ22

1

2DΓ12
2 0

)
=

(
0 0

0 0

)
.

This yields Equation (5.6). Suppose dim(P0(Σ, D)) ≥ 2. If dim(P0(Σ, D)) = 3,
then P0(Σ, D) contains a nilpotent element and we may apply Lemma 5.6 to con-
clude ρDs = 0 and Assertion (ii) gives the relations of Equation (5.7) for suitably
chosen θ. We therefore suppose dim(P0(Σ, D)) = 2. Let {S, T} be linearly inde-
pendent elements of P0(Σ, D). Expand

S =

(
S1

1 S1
2

S2
1 −S1

1

)
, T =

(
1 0

0 −1

)
, ST =

(
S1

1 −S1
2

S2
1 S1

1

)
.

Since tr(ST ) = 2S1
1 is constant, we obtain S1

1 is constant. Define Ŝ = S−S1
1 T .

Then Ŝ is parallel and Ŝ 6= 0 since S and T are linearly independent. We then have

Ŝ =

(
0 S1

2

S2
1 0

)
, T =

(
1 0
0 −1

)
, ŜT =

(
0 −S1

2

S2
1 0

)
.

Since Ŝ ± ŜT are nilpotent and not both are zero, P(Σ, D) contains a non-trivial
nilpotent element and we can use Lemma 5.6 to conclude ρDs = 0 and Assertion (ii)
establishes Assertion (iii). Assertion (iv) follows by a direct computation.

5.2 Characterization of affine surfaces admitting parallel
tensor fields

The purpose of this section is to prove Theorem 5.1, which characterizes the existence
of parallel tensor fields by the recurrence of the symmetric part of the Ricci tensor.
We recall the result for the convenience of the reader.

Theorem 5.1. Let (Σ, D) be a simply connected affine surface with ρDs 6= 0.

(i) (Σ, D) admits a Kähler structure if and only if det(ρDs ) > 0 and ρDs is recur-
rent.

(ii) (Σ, D) admits a para-Kähler structure if and only if det(ρDs ) < 0 and ρDs is
recurrent.
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(iii) (Σ, D) admits a nilpotent Kähler structure if and only if ρDs is of rank one and
recurrent.

Proof.
Assertion (i). Let (Σ, D) be an affine surface with ρDs 6= 0 admitting a Kähler struc-
ture. Take local coordinates as in Lemma 5.7. Then the relations in Equation (5.4)
show that det(ρDs ) > 0 and ρDs is recurrent, i.e., DρDs = ω ⊗ ρDs with

ω = −(2DΓ11
1 − ∂x1 log ρDs,11) dx1 − (2DΓ11

2 − ∂x2 log ρDs,22) dx2 .

Conversely, if ρDs is recurrent and det(ρDs ) > 0, there exist local coordinates (x1, x2)
so that ρDs = ψ(x1, x2) (dx1 ⊗ dx1 + dx2 ⊗ dx2) (see for example Theorem 3.2
in [104]). Now a straightforward calculation usingDρDs = ω⊗ρDs gives the relations
of Equation (5.4) and thus Assertion (ii) in Lemma 5.7 shows that (Σ, D) is Kähler.

Assertion (ii). Let (Σ, D) be an affine surface with ρDs 6= 0 admitting a para-Kähler
structure. Take local coordinates as in Lemma 5.8. Then the relations in Equa-
tion (5.6) show that det(ρDs ) < 0 and ρDs is recurrent, i.e., DρDs = ω ⊗ ρDs with

ω = −(DΓ11
1 − ∂x1 log ρDs,12) dx1 − (DΓ22

2 − ∂x2 log ρDs,12) dx2 .

Conversely, if ρDs is recurrent and det(ρDs ) < 0, there exist local coordinates (x1, x2)
so that ρDs = ψ(x1, x2) (dx1 ⊗ dx2 + dx2 ⊗ dx1) (see for example Theorem 3.2
in [104]). Now a straightforward calculation usingDρDs = ω⊗ρDs gives the relations
of Equation (5.6) and thus Assertion (ii) in Lemma 5.8 shows that (Σ, D) admits a
para-Kähler structure.

Assertion (iii). Let (Σ, D) be an affine surface with ρDs 6= 0. Assume (Σ, D) admits
a nilpotent Kähler structure. Take adapted coordinates as in Lemma 5.6 so that the
Christoffel symbols are given by the relations in Equation (5.2). Then ρDs is recurrent
of rank one with recurrence 1-form given by

ω = ∂x1 log ρDs,22 dx
1 − (2DΓ12

1 − ∂x2 log ρDs,22) dx2 .

Conversely, let (Σ, D) be a recurrent affine surface with Rank(ρDs ) = 1. Take local
coordinates (x1, x2) so that ker(ρDs ) = span{∂x1} (see Theorem 4.1 in [104]). If
ρDs = ρDs,22dx

2 ⊗ dx2, a straightforward calculation shows that DρDs = ω ⊗ ρDs for
some 1-form ω if and only if DΓ11

2 = 0 and DΓ12
2 = 0. Furthermore, one has

ρDs,12 = 1
2

(
∂x1(DΓ12

1 − DΓ22
2)− ∂x2DΓ11

1
)
, ρDs,11 = 0,

ρDs,22 = DΓ11
1DΓ22

1 + DΓ12
1
(
DΓ22

2 − DΓ12
1
)

+ ∂x1
DΓ22

1 − ∂x2DΓ12
1 .
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Since ρDs,12 = 0 one has the additional relation

DΓ11
1 = µ(x1) +

∫
∂x1
(
DΓ12

1 − DΓ22
2
)
dx2 .

Change the coordinates as (u1, u2) = (x1 + a(x1), x2) so that

du1 = (1 + a′)dx1, du2 = dx2,

∂u1 = (1 + a′)−1∂x1 , ∂u2 = ∂x2 .

Now, one has that
uDΓ11

2 = 0, uDΓ12
2 = 0, uDΓ12

1 = xDΓ12
1, uDΓ22

2 = xDΓ22
2

and

uDΓ11
1 =

1

1 + a′(x1)

(
xDΓ11

1 − a′′(x1)

1 + a′(x1)

)
=

1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)
+

∫
∂x1
(
uDΓ12

1 − uDΓ22
2
)
dx2

)
=

1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)

)
+

1

1 + a′(x1)

∫
∂x1
(
uDΓ12

1 − uDΓ22
2
)
dx2

=
1

1 + a′(x1)

(
µ(x1)− a′′(x1)

1 + a′(x1)

)
+

∫
∂u1
(
uDΓ12

1 − uDΓ22
2
)
du2 .

Hence choosing a(x1) to be a solution of a′′ − µa′ − µ = 0 one may assume that

DΓ11
1 =

∫
∂x1
(
DΓ12

1 − DΓ22
2
)
dx2 .

Let T = T 1
2 ∂x1 ⊗ dx2 be a nilpotent tensor field on (Σ, D). Then T is parallel

if and only if

T 1
2;2 = ∂x2T

1
2 + (DΓ12

1 − DΓ22
2)T 1

2 = 0 and

T 1
2;1 = ∂x1T

1
2 + T 1

2
DΓ11

1 = 0 .

Use the equation T 1
2;2 = 0 and set T 1

2 = e−
∫

(DΓ12
1 − DΓ22

2)dx2
. Then

T 1
2;1 = ∂x1T

1
2 + T 1

2
DΓ11

1

= e−
∫

(DΓ12
1 − DΓ22

2)dx2 (
−∂x1

∫
(DΓ12

1 − DΓ22
2)dx2 + DΓ11

1
)

= 0,

thus showing that T is a nilpotent Kähler structure.
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5.3 Parallel tensor fields on homogeneous surfaces

Remark 5.9. Let (Σ, D) be a simply connected affine surface with Rank(ρDs ) = 1.
The following conditions are equivalent:

(i) The symmetric part of the Ricci tensor is recurrent: DρDs = ω ⊗ ρDs .

(ii) The kernel of the symmetric part of the Ricci tensor is a parallel distribution:
D ker(ρDs ) ⊂ ker(ρDs ).

(iii) The kernel of ρDs is spanned by a recurrent vector field: ker(ρDs ) = span{X}
and DX = η ⊗X .

Consequently, if ρDs has rank one and if ker(ρDs ) is parallel, then the affine surface
admits a nilpotent Kähler structure (see for example [89]).

Indeed, assume that Rank(ρDs ) = 1. Choose local coordinates so that the sym-
metric Ricci tensor has the form ρDs = ρDs,22dx

2⊗dx2. A straightforward calculation
shows that any of the conditions of the observation is equivalent to the condition
DΓ11

2 = DΓ12
2 = 0.

5.3 Parallel tensor fields on homogeneous surfaces

Homogeneous surfaces were discussed in Chapter 1. For the convenience of the
reader, we recall the following result of Opozda [90]. It is fundamental in the subject.

Theorem 1.31. Let (Σ, D) be a locally homogeneous affine surface which is not flat.
Then at least one of the following three possibilities holds which describe the local
geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols DΓij
k are

constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form

DΓij
k = (x1)−1Cij

k

for Cijk constant and x1 > 0.

(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Homogeneous Type C surfaces have symmetric and parallel Ricci tensor, which
is a multiple of the metric. Hence any such surface admits either a Kähler or a para-
Kähler structure, depending on the signature of the metric.

In what remains of this chapter we analyze the existence of parallel (1, 1)-tensor
fields on the other two types of homogeneous surfaces.
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Parallel tensors on affine surfaces

5.3.1 Parallel tensor fields on Type A homogeneous surfaces

The Ricci tensor of any Type A homogeneous model is symmetric. Furthermore,
the Ricci tensor is recurrent if and only if it is of rank one (see Lemma 2.3 in [18]).
Therefore Theorem 5.1 (iii) shows that a Type A homogeneous surface admits a
parallel tensor field if and only if the Ricci tensor is of rank one, in which case it is a
nilpotent Kähler surface. The construction in Theorem 4.6 make an explicit use of the
nilpotent Kähler structure. Therefore, it is important to have concrete expressions.
We begin with a useful algebraic fact that we will use to explicitly determine all
nilpotent Kähler structures on TypeA homogeneous models. As a matter of notation,
let K(Σ, D) be the Lie algebra of affine Killing vector fields.

Lemma 5.10. Let D be a Type A connection on Σ = R2 which is not flat and which
satisfies P0(Σ, D) 6= {0}. There exists (a1, a2) ∈ R2 and 0 6= t ∈ M0

2 (R) so that
P0(Σ, D) = ea1x

1+a2x2t · R.

Proof. It is convenient to complexify and set P0
C(Σ, D) := P0(Σ, D)⊗R C. If K ∈

K(Σ, D) and if T ∈ P0
C(Σ, D), then the Lie derivative LKT belongs to P0

C(Σ, D).
Thus P0

C(Σ, D) is a finite dimensional complex K(Σ, D) module. If D defines a
Type A structure on R2, the Christoffel symbols are constant and ∂x1 and ∂x2 are
affine Killing vector fields. If X and Y are vector fields, then we have LXY =
[X,Y ] is the Lie bracket. Thus L∂xi∂xj = 0 and dually L∂xidx

j = 0; if T =

T ij∂xi ⊗ dxj , then {L∂
xk
T}ij = ∂xk{T ij}; the components of T do not interact.

The operators ∂x1 and ∂x2 commute and act on the finite-dimensional vector space
P0
C(Σ, D). Consequently, there is a non-trivial joint eigenvector so ∂x1T ij = a1T

i
j

and ∂x2T ij = a2T
i
j ; this implies T = ea1x

1+a2x2t for 0 6= t ∈ M0
2 (C). Since

(Σ, D) is not flat, the Ricci tensor is non-zero. Since the Ricci tensor is symmetric
for a Type A geometry, ρDs 6= 0. Theorem 5.3 then implies dim(P0

C(Σ, D)) = 1.
Thus the real and imaginary parts of T are linearly dependent and we can assume T
is real. The desired result now follows.

Lemma 5.11. Let (Σ, D) = (R2, D) be a Type A structure which is not flat. Then
P0(Σ, D) 6= {0} if and only if (Σ, D) is linearly equivalent to a Type A structure
with DΓ11

2 = DΓ12
2 = 0. In this setting,

ρD = (−DΓ12
1 DΓ12

1 + DΓ11
1 DΓ22

1 + DΓ12
1 DΓ22

2)dx2 ⊗ dx2 .

Let a1 := −DΓ11
1, let a2 := DΓ22

2 − DΓ12
1, and let T = ea1x

1+a2x2∂x1 ⊗ dx2.
Then P0(Σ, D) = T · R is 1-dimensional and nilpotent.

Proof. LetD define a TypeA structure on R2 withP0(Σ, D) 6= {0}which is not flat.
We apply Lemma 5.10 to choose (a1, a2) so that 0 6= T = ea1x

1+a2x2t ∈ P0
C(Σ, D)
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for some 0 6= t ∈ M0
2 (C). By Lemma 5.2, the eigenvalues of T are constant.

Assume the eigenvalues are non-zero. This implies ea1x
1+a2x2 is constant and hence

a1 = a2 = 0. By rescaling T , we may assume the eigenvalues are ±1 and hence,
after making a complex linear change of coordinates, we may assume T 1

1 = 1,
T 2

2 = −1, and T 1
2 = T 2

1 = 0. Setting DT = 0 then yields the relations

DΓ12
1 = DΓ11

2 = DΓ22
1 = DΓ12

2 = 0 .

This forces the Ricci tensor to be zero which is false. Thus no Type A geometry
which is not flat admits a Kähler or a para-Kähler structure.

We may therefore assume the eigenvalues of T are constant and zero. After
making a linear change of coordinates, we can assume T = ea1x

1+a2x2∂x1 ⊗ dx2.
We compute DT = 0 if and only if

DΓ11
2 = 0, a1 + DΓ11

1 − DΓ12
2 = 0

DΓ12
2 = 0, a2 + DΓ12

1 − DΓ22
2 = 0 .

Thus (Σ, D) admits a non-trivial parallel nilpotent tensor of type (1, 1) if and only
if DΓ11

2 = DΓ12
2 = 0. We make a direct computation to determine ρD. Since the

Ricci tensor is symmetric, we use Theorem 5.3 to see dim(P0(Σ, D)) = 1.

We say that two TypeA structures on R2 are linearly equivalent if there exists an
element Θ ∈ GL(2,R) which intertwines the two structures. As a consequence of
Lemma 5.11 we have:

Theorem 5.12. Let (Σ, D) = (R2, D) be a Type A structure which is not flat. Then
P0(Σ, D) 6= {0} if and only if the Ricci tensor is of rank one. Furthermore, (Σ, D) is
linearly equivalent to a structure where DΓ11

2 = 0 and DΓ12
2 = 0, andP0(Σ, D) =

T · R, where T = e−
DΓ11

1x1+(DΓ22
2−DΓ12

1)x2∂x1 ⊗ dx2.

Remark 5.13. If (Σ, D) is a TypeA geometry which is not flat, then (Σ, D) is neither
Kähler nor para-Kähler. Furthermore, any Type A surface with Rank(ρDs ) = 2
satisfies dim(P0(Σ, D)) = 0.

Remark 5.14. Let (Σ, D) be a Type A surface with Ricci tensor of rank one and
let T = ea1x

1+a2x2∂x1 ⊗ dx2 be a nilpotent Kähler structure as in Theorem 5.12. A
straightforward calculation shows that the corresponding modified Riemannian ex-
tension (T ∗Σ, gD,Φ,T ) with deformation tensor field Φ ≡ 0 is anti-self-dual. This is
due to the fact that any Type A homogeneous geometry is projectively flat. More-
over it has been shown in [18] that any Type A surface with Ricci tensor of rank one
admits affine gradient Ricci solitons (i.e., smooth functions f ∈ C∞(Σ) satisfying
Hesf +2ρDs = 0) so that df(ker(ρD)) = 0. Hence (T ∗Σ, gD,0,T , h = π∗f) is an
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Parallel tensors on affine surfaces

anti-self-dual gradient Ricci soliton which is never locally conformally flat. In this
setting, the soliton is steady (i.e., λ = 0) and isotropic (i.e., ‖dπ∗f‖2 = 0).

In a more general setting, results in [20] show that any TypeA surface with Ricci
tensor of rank one admits solutions of the affine quasi-Einstein equation (i.e., smooth
functions f ∈ C∞(Σ) satisfying Hesf +2ρDs −µdf⊗df = 0) so that df(ker(ρD)) =
0. Hence (T ∗Σ, gD,0,T , h = π∗f) is an anti-self-dual quasi-Einstein manifold which
is never locally conformally flat.

Results of [18] show that if (Σ, D) is a Type A geometry which is not flat, then
either dim(K(Σ, D)) = 2 or dim(K(Σ, D)) = 4.

Theorem 5.15. Let (Σ, D) = (R2, D) be a Type A structure. The following asser-
tions are equivalent:

(i) Rank(ρD) = 1.

(ii) P0(Σ, D) 6= {0}.

(iii) dim(P0(Σ, D)) = 1.

(iv) dim(K(Σ, D)) = 4.

Proof. Results of [18] (see Lemma 2.3) show that ρDs has rank one if and only if
(Σ, D) is linearly equivalent to a structure where DΓ11

2 = 0 and DΓ12
2 = 0. The

equivalence of Assertion (i), Assertion (ii), and Assertion (iii) then follows from
Theorem 5.12. The equivalence of Assertion (i) and Assertion (iv) follows from
Theorem 3.4 of [18].

5.3.2 Parallel tensor fields on Type B homogeneous surfaces

The situation is more complicated in the Type B setting. For instance, Remark 5.17
shows the existence of simply connected affine surfaces with Rank(ρDs ) = 1 but
with non-recurrent ρDs and dim(P0(Σ, D)) = 0. Also, in contrast with Type A
surfaces, there are non-flat Type B surfaces with ρDs = 0. This situation is discussed
in Lemma 5.19.

Let (Σ, D) = (R+ × R, D) where DΓij
k = (x1)−1Cij

k and Cijk ∈ R be a
Type B surface which is not flat such that P0(Σ, D) is non-trivial. In Lemma 5.16,
we give an algebraic criteria for determining when P0(Σ, D) is non-trivial. In Lem-
mas 5.21–5.29, we use this criteria to divide the analysis into five different cases and
to determine when dim(P0(Σ, D)) = 1 or dim(P0(Σ, D)) = 3. We first prove an
analogue of Lemma 5.10 in this setting.

Lemma 5.16. If D is a Type B connection on Σ = R+ ×R and if P0(Σ, D) 6= {0},
then there exists α ∈ C and 0 6= t ∈M0

2 (C) so that (x1)αt ∈ P0
C(Σ, D).
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5.3 Parallel tensor fields on homogeneous surfaces

Proof. Let D define a Type B structure on R+ × R. The vector fields ∂x2 and X :=
x1∂x1 + x2∂x2 are affine Killing vector fields (see [18]). We have:

LX(∂xi) = [X, ∂xi ] = −∂xi LX(dxj) = dxj , LX(∂xi ⊗ dxj) = 0,

L∂x2 (∂xi) = 0, L∂x2 (dxj) = 0, L∂x2 (∂xi ⊗ dxj) = 0 .

Therefore the components do not interact and we have:

{LXT}ij = XT ij and {L∂x2T}
i
j = ∂x2T

i
j .

Because P0
C(Σ, D) is a finite-dimensional ∂x2 module, we can find a non-trivial com-

plex eigenvector, i.e., 0 6= T ∈ P0
C(Σ, D) so ∂x2T ij = a2T

i
j . This implies that

T ij = ea2x
2
tij(x

1). Applying Xk yields

Xk(T ij) = ea2x
2{ak2(x2)ktij(x

1) +O((x2)k−1)} .

Thus if a2 6= 0, the elements {T,LXT, . . . ,LXT k} are linearly independent for any
k. This is false since dim(P0

C(Σ, D)) ≤ 3. Therefore, T = tij(x
1). We let V 6= {0}

be the subspace of all elements of P0
C(Σ, D) where T = T (x1). Choose a non-

trivial eigenvector of LX . Then x1∂x1T = αT implies T (x1) = (x1)αt for some
t ∈M0

2 (C).

Remark 5.17. In the TypeA setting, the condition Rank(ρDs ) = 1 impliesP0(Σ, D)
is non-trivial. This fails in the Type B setting. Let (Σ, D) be the Type B surface
defined by setting C22

2 = (3 + 2
√

3)/3 and Cijk = 1 otherwise. We compute that

ρDs =
1

(x1)2

 1 + 2√
3

1√
3

1√
3

2√
3
− 1


and, consequently, ρDs has rank one. Assume dim(P0(Σ, D)) ≥ 1. It follows from
Lemma 5.16 that there exists an element in P0

C(Σ, D) of the form T = (x1)α(tij)
where 0 6= (tij) ∈M0

2 (C). Setting T ij;2 = 0 yields the relations:

(x1)α−1

 t21 − t12 −2t11 − 2√
3
t12

2t11 + 2√
3
t21 t12 − t21

 =

(
0 0

0 0

)
.

We solve this relation to see t21 = t12 and t11 = − 1√
3
t12. Substituting these relations

and setting T ij;1 = 0 then yields:

(x1)α−1

 − α√
3
t12

(
α+ 2√

3

)
t12(

α− 2√
3

)
t12

α√
3
t12

 =

(
0 0

0 0

)
.
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This shows t12 = 0 and hence T = 0. This shows P0(Σ, D) is trivial. The result
also follows from Theorem 5.1 just observing that the symmetric Ricci tensor ρDs is
not recurrent.

Definition 5.18. We follow the discussion of [18] and introduce the following sur-
faces of Type B.

(1) For c ∈ R, let Qc be the affine manifold of Type B defined by

C11
1 = 0, C11

2 = c, C12
1 = 1, C12

2 = 0, C22
1 = 0, C22

2 = 1 .

Since ρD = (x1)−2dx1 ∧ dx2, ρDs = 0.

(2) For 0 6= c ∈ R, let P±0,c be the affine manifold of Type B defined by

C11
1 = ∓c2 + 1, C11

2 = c, C12
1 = 0,

C12
2 = ∓c2, C22

1 = ±1, C22
2 = ±2c .

Since ρD = ±(x1)−2c dx1 ∧ dx2, ρDs = 0.

By Theorem 5.3, ρDs = 0 if and only if dim(P0(Σ, D)) = 3. We give a complete
description of Type B manifolds which are not flat where ρDs = 0 as follows.

Lemma 5.19.

(i) If (Σ, D) is a Type B manifold which is not flat but which has ρDs = 0, then
(Σ, D) is linearly equivalent either to Qc or to P±0,c.

(ii) If (Σ, D) = Qc for c 6= 0, then

P0
C(Qc) = span

{(
0 1

c 0

)
, (x1)2

√
c

( √
c 1

−c −
√
c

)
,

(x1)−2
√
c

(
−
√
c 1

−c
√
c

)}
.

(iii) If (Σ, D) = Qc for c = 0, then

P0(Q0) = span

{(
0 1

0 0

)
,

(
− log(x1) 1− log(x1)2

1 − log(x1)

)
,

(
− log(x1) −1− log(x1)2

1 − log(x1)

)}
.
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(iv) If (Σ, D) = P±0,c, then

P0(P±0,c) = span

{
(x1)−1

(
−c 1

−c2 c

)
,

(x1)−1

(
±1

2(x1 ∓ 2cx2) x2

±c(x1 ∓ cx2) ∓1
2(x1 ∓ 2cx2)

)
,

(x1)−1

(
±x2(x1 ∓ cx2) (x2)2

−(x1 ∓ cx2)2 ∓x2(x1 ∓ cx2)

)}
.

Proof. Assertion (i) follows from Lemma 4.6 in [18]; the remaining assertions follow
from a direct computation.

Remark 5.20. Suppose that (Σ, D) is a Type B surface with P0(Σ, D) non-trivial.
By Lemma 5.16, there exists α ∈ C and 0 6= t ∈ M0

2 (C) so that T := (x1)αt ∈
P0
C(Σ, D). If α is complex, then the real and imaginary parts of T are linearly de-

pendent and both belong to P0(Σ, D). This implies dim(P0(Σ, D)) ≥ 2 and hence
ρDs = 0. Lemma 5.19 then yields (Σ, D) = Qc for c < 0 and α is purely imaginary.

In view of Lemma 5.19, we will assume ρDs 6= 0 henceforth. Let (Σ, D) be a
TypeB geometry withP0(Σ, D) non-trivial and, since ρDs 6= 0, dim(P0(Σ, D)) = 1.
By Lemma 5.16, there exists α ∈ C and 0 6= t ∈M0

2 (C) so that (x1)αt ∈ P0
C(Σ, D).

By Remark 5.20, α ∈ R and thus, by taking real and imaginary parts, we may assume
that 0 6= t ∈M0

2 (R). Suppose α = 0. We deal with the case t12 6= 0 in Lemma 5.21,
the case t12 = 0 and t21 6= 0 in Lemma 5.23, and the case t12 = t21 = 0 and
t11 6= 0 in Lemma 5.25. We then turn to the situation where α 6= 0. Since det(T ) =
(x1)2α det(t) is constant and since α 6= 0 is real, we conclude that t is nilpotent. In
Lemma 5.27, we assume t12 6= 0 and in Lemma 5.29, we assume t12 = 0 to complete
our analysis.

Lemma 5.21. Let D define a Type B structure on R+ × R with ρDs 6= 0. Suppose
that there exists 0 6= t ∈ P0(Σ, D) ∩M2(R) with t12 6= 0. Rescale t to assume that
t12 = 1. Then:

(i) The Christoffel symbols are determined by

C11
1 = C22

1 t21 + 2(C22
2 + 2C22

1 t11)t11, C12
1 = C22

2 + 2C22
1 t11,

C11
2 = (C22

2 + 2C22
1 t11)t21, C12

2 = C22
1 t21 .
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(ii) The symmetric part of the Ricci tensor is given by

ρDs = (x1)−2C22
1

(
t21 −t11

−t11 −1

)
, C22

1 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) =

(
t11 1

t21 −t11

)
· R .

Proof. The equations D∂xi
t = 0, i = 1, 2 become:(

C12
1t21 − C11

2 C11
1 − C12

2 − 2C12
1t11

−C11
1t21 + C12

2t21 + 2C11
2t11 C11

2 − C12
1t21

)
=

(
0 0

0 0

)
,

(
C22

1t21 − C12
2 C12

1 − C22
2 − 2C22

1t11

−C12
1t21 + C22

2t21 + 2C12
2t11 C12

2 − C22
1t21

)
=

(
0 0

0 0

)
.

These equations yield the relations amongst theCijk; a direct computation then yields
ρDs ; we obtain C22

1 6= 0 since ρDs 6= 0. Furthermore, since ρDs 6= 0, we have
dim(P0(Σ, D)) = 1 and the element given spans P0(Σ, D).

Remark 5.22. Let t be a nilpotent Kähler tensor field as in Lemma 5.21. Then, in
contrast with Remark 5.14, the modified Riemannian extension (T ∗Σ, gD,0,t) is never
anti-self-dual. Indeed, the affine structures in Lemma 5.21 are never projectively flat
unless ρDs = 0.

Lemma 5.23. Let D define a Type B structure on R+ × R with ρDs 6= 0. Suppose
that there exists 0 6= t ∈ P0(Σ, D) ∩M2(R) with t12 = 0 and t21 6= 0. Rescale t to
assume t21 = 1. Then:

(i) The Christoffel symbols are determined by

C11
1 = C12

2 + 2C11
2t11, C12

1 = 0, C22
1 = 0, C22

2 = −2C12
2t11 .

(ii) The Ricci tensor is given by

ρD = (x1)−2C12
2

(
1 −2t11

0 0

)
, C12

2 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by
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P0(Σ, D) =

(
t11 0
1 −t11

)
· R .

Proof. Setting Dt = 0 yields the relations(
C12

1 −2C12
1t11

−C11
1 + C12

2 + 2C11
2t11 −C12

1

)
=

(
0 0

0 0

)
,

(
C22

1 −2C22
1t11

−C12
1 + C22

2 + 2C12
2t11 −C22

1

)
=

(
0 0

0 0

)
.

We solve these relations to obtain the relations amongst the Cijk. We then compute
ρD. Since ρDs 6= 0, C12

2 6= 0. Furthermore, since ρDs 6= 0, dim(P0(Σ, D)) = 1 and
the element given spans P0(Σ, D).

Remark 5.24. The modified Riemannian extensions of nilpotent tensor fields in
Lemma 5.23 corresponding to t11 = 0 are anti-self-dual whenever the deformation
tensor field Φ ≡ 0. In this case Lemma 5.23 gives C12

1 = 0, C22
1 = 0, C22

2 = 0,
and thus (Σ, D) is also of type A (see Remark 1.32). In this case, Remark 5.14
applies.

Lemma 5.25. Let D define a Type B structure on R+ × R with ρDs 6= 0. Suppose
that there exists 0 6= t ∈ P0(Σ, D)∩M2(R) with t12 = t21 = 0. Rescale t to assume
t11 = 1. Then:

(i) The Christoffel symbols are determined by

C11
2 = 0, C12

1 = 0, C12
2 = 0, C22

1 = 0 .

(ii) The Ricci tensor is given by

ρD = (x1)−2C22
2dx1 ⊗ dx2, C22

2 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) =

(
1 0

0 −1

)
· R .

Proof. Let t =

(
1 0
0 −1

)
. Setting Dt = 0 yields the relations

(
0 −2C12

1

2C11
2 0

)
=

(
0 −2C22

1

2C12
2 0

)
=

(
0 0

0 0

)
.
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The relations in Lemma 5.25 concerning the Cijk now follow. We determine ρD

by a direct computation; since ρDs 6= 0, C22
2 6= 0. Furthermore, since ρDs 6= 0,

dim(P0(Σ, D)) = 1 and the element given spans P0(Σ, D).

Remark 5.26. Theorem 5.12 shows that type A surfaces with dim(P0(Σ, D)) ≥
1 have dim(P0(Σ, D)) = 1 in the non-flat case and P0(Σ, D) is generated by a
nilpotent Kähler structure. In opposition, the Type B geometries in Lemma 5.21 with
dim(P0(Σ, D)) = 1 contain Kähler, para-Kähler and nilpotent Kähler examples. On
the other hand, the Type B geometries treated in Lemma 5.23 and Lemma 5.25 only
admit para-Kähler structures.

Lemma 5.27. Let D define a Type B structure on R+ × R with ρDs 6= 0. Suppose
that there exists 0 6= t ∈ M2(R) with t12 6= 0 and that there exists α 6= 0 so that
(x1)αt ∈ P0(Σ, D). Rescale t so that t12 = 1. Then:

(i) The Christoffel symbols are determined by

C12
1 = C22

2 + 2C22
1t11, C11

2 = t11(−C11
1 + t11(C22

2 + C22
1t11)),

C12
2 = −C22

1(t11)2, α = −C11
1 + t11(2C22

2 + 3C22
1t11) 6= −1 .

(ii) The symmetric part of the Ricci tensor is given by

ρDs = −(x1)−2C22
1(1 + α)

(
(t11)2 t11

t11 1

)
, C22

1 6= 0 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) = (x1)α

(
t11 1

−(t11)2 −t11

)
· R .

Proof. As noted previously, α 6= 0 implies t is nilpotent. Since we assumed t12 = 1,

T = (x1)α

(
t11 1

−(t11)2 −t11

)
.

The conditions D∂xi
T = 0 (i = 1, 2) imply the vanishing of the matrices(

−C11
2 − (C12

1t11 − α)t11 C11
1 − C12

2 + α− 2C12
1t11

t11(2C11
2 + (C11

1 − C12
2 − α)t11) C11

2 + (C12
1t11 − α)t11

)
and
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5.3 Parallel tensor fields on homogeneous surfaces

(
−C12

2 − C22
1(t11)2 C12

1 − C22
2 − 2C22

1t11

t11(2C12
2 + (C12

1 − C22
2)t11) C12

2 + C22
1(t11)2

)
.

We solve these relations to obtain the relations amongst the Cijk. The expression of
α and ρDs then follows by a direct computation. Since ρDs 6= 0, we obtain C22

1 6= 0,
α 6= 0, and α 6= −1. Furthermore, since ρDs 6= 0, dim(P0(Σ, D)) = 1 and the
element given spans P0(Σ, D).

Remark 5.28. Let T be a nilpotent Kähler tensor field as in Lemma 5.27. The mod-
ified Riemannian extension (T ∗Σ, gD,0,T ) is not anti-self-dual.

Lemma 5.29. Let D define a Type B structure on R+ × R with ρDs 6= 0. Suppose
that there exists 0 6= t ∈ M2(R) with t12 = 0 and that there exists α 6= 0 so that
(x1)αt ∈ P0(Σ, D). Since t is nilpotent, t11 = 0 and t21 6= 0. Rescale t so that
t21 = 1. Then:

(i) The Christoffel symbols are determined by

C12
1 = 0, C22

1 = 0, C22
2 = 0, α = C11

1 − C12
2 /∈ {0,−1} .

(ii) The Ricci tensor is given by

ρD = (x1)−2(1 + α)C12
2dx1 ⊗ dx1 .

(iii) The space of trace free parallel tensor fields is generated by

P0(Σ, D) = (x1)C11
1−C12

2
∂x2 ⊗ dx1 · R .

Proof. Setting DT = 0 yields the vanishing of the matrices(
C12

1 0

−C11
1 + C12

2 + α −C12
1

)
and

(
C22

1 0

−C12
1 + C22

2 −C22
1

)
.

The relations amongst the Cijk follows and α is determined. A direct computation
yields the Ricci tensor. Since ρD = ρDs 6= 0, dim(P0(Σ, D)) = 1 and the element
given spans P0(Σ, D).
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Chapter 6

General examples of Bach-flat
manifolds in neutral signature

In this chapter we generalize the construction in Chapter 4 to characterize Bach-
flat Riemannian extensions of affine surfaces admitting a nilpotent structure without
assuming any parallelizability condition.

This chapter is organized as follows. In Sections 6.1 and 6.2 we make use of the
Cauchy-Kovalevski Theorem to show that any nilpotent Riemannian extension can be
locally deformed to be Bach-flat in the real analytic case (see Theorem 6.1). In Sec-
tion 6.3 we show that all these metrics have vanishing scalar curvature invariants (see
Theorem 6.8). For that reason, in Section 6.3.2 we shall introduce suitable invariants
which are not of Weyl type to distinguish different classes. Finally, in Section 6.4,
we shall exhibit some specific examples of Bach-flat manifolds. In this chapter we
report on work investigated in [31].

6.1 Bach-flat Riemannian extensions

Let (Σ, D) be an affine surface. If (x1, x2) are local coordinates on Σ, let (x1′ , x2′)
be the associated dual coordinates on the cotangent bundle. Let T = T ri ∂xr ⊗ dxi
be a tensor field of type (1, 1) on Σ and let Φij be a symmetric (0, 2)-tensor on Σ.
The associated modified Riemannian extension

gD,Φ,T = 2 dxi ◦ dxi′

+
{

1
2xr′xs′(T

r
iT

s
j + T rjT

s
i)− 2xk′

DΓij
k + Φij

}
dxi ◦ dxj

(6.1)

is invariantly defined and independent of the particular system of local coordinates
(see for example the discussion in Chapter 1 and [29]). Let

ST := {p ∈ Σ : T (p) = λ(p) Id} and OT := Σ− ST .

The space ST is the set of points where T is a scalar multiple of the identity; OT is
the complementary space.
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Theorem 6.1. Let (Σ, D) be an affine surface, let T be a tensor field of type (1, 1),
and let Φ be a symmetric 2-tensor.

(i) If Σ = ST , then (T ∗Σ, gD,Φ,T ) is half conformally flat and hence Bach-flat.

(ii) OT is an open subset of Σ. If p ∈ OT and if B(p) = 0, then T (p)2 = 0.

(iii) If T is nilpotent on Σ and if T (p) 6= 0, then there exist local coordinates near
p so that T = ∂x1 ⊗ dx2. The following assertions are equivalent in such a
coordinate system:

(a) (T ∗Σ, gD,Φ,T ) is Bach-flat.

(b) DΓ11
2 = 0 and (DΓ11

1)2 − DΓ11
1 DΓ12

2 + ∂x1(DΓ11
1 − DΓ12

2) = 0.

Proof. A direct computation shows that if T = f Id for f ∈ C∞(Σ), then the
manifold (T ∗Σ, gD,Φ,T ) is self-dual [29], and thus B = 0; this establishes Asser-
tion (i). Consequently, we assume henceforth that there exists a point p of Σ where
T (p) 6= f(p) Id.

Let Coeff[Bk`;xi′xj′ ] be the coefficient of xi′xj′ in Bk`. A straightforward cal-
culation shows that the components of the Bach tensor are quadratic polynomials in
the fiber coordinates (x1′ , x2′), and moreover one has:

Coeff[B11;x1′x1′ ] = 1
6

{(
−30(detT )2 − detT (trT )2 + (trT )4

)
T 1

1(x1, x2)2

+2 detT trT
(
17 detT − 2(trT )2

)
T 1

1(x1, x2)

−2(detT )2
(
5 detT + (trT )2

)}
,

Coeff[B11;x1′x2′ ] = 1
6T

1
2(x1, x2)

{(
−30(detT )2−detT (trT )2+(trT )4

)
T 1

1(x1, x2)

+ detT trT
(
17 detT − 2(trT )2

)}
,

Coeff[B11;x2′x2′ ] = 1
6T

1
2(x1, x2)2

{
−30(detT )2 − detT (trT )2 + (trT )4

}
,

Coeff[B12;x1′x1′ ] = 1
3T

2
1(x1, x2)

{(
−30(detT )2−detT (trT )2+(trT )4

)
T 1

1(x1, x2)

+ detT trT
(
17 detT − 2(trT )2

)}
,

Coeff[B12;x1′x2′ ] = 1
6

{
−2
(
30(detT )2 trT + detT (trT )3 − (trT )5

)
T 1

1(x1, x2)

+2
(
30(detT )2 + detT (trT )2 − (trT )4

)
T 1

1(x1, x2)2

+ detT
(
20(detT )2 + 16 detT (trT )2 − 3(trT )4

)}
,

Coeff[B12;x2′x2′ ] = 1
3T

1
2(x1, x2)

{(
30(detT )2+detT (trT )2−(trT )4

)
T 1

1(x1, x2)

−13(detT )2 trT − 3 detT (trT )3 + (trT )5
}
,
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Coeff[B22;x1′x1′ ] = 1
6T

2
1(x1, x2)2

{
−30(detT )2 − detT (trT )2 + (trT )4

}
,

Coeff[B22;x1′x2′ ] = 1
6T

2
1(x1, x2)

{(
30(detT )2 + detT (trT )2 − (trT )4

)
T 1

1(x1, x2)

−13(detT )2 trT − 3 detT (trT )3 + (trT )5
}
,

Coeff[B22;x2′x2′ ] = 1
6

{(
26(detT )2 trT + 6 detT (trT )3 − 2(trT )5

)
T 1

1(x1, x2)

+
(
−30(detT )2 − detT (trT )2 + (trT )4

)
T 1

1(x1, x2)2

−10(detT )3 + 2(detT )2(trT )2 − 5 detT (trT )4 + (trT )6
)
} .

Next we analyze the different possibilities for the eigenvalues of T (p), showing
firstly that they cannot be complex. Assume that T 1

1 = T 2
2 and T 1

2 = −T 2
1. Then

det(T ) = (T 1
1)2 + (T 1

2)2 and tr(T ) = 2T 1
1, so we get

Coeff[B11;x1′x1′ ] = −1

3
(T 1

2)2
{

3(T 1
1)4 + 5(T 1

2)4
}
,

from where it follows that T 1
2 = 0.

Next assume that T (p) has two distinct real eigenvalues and set T 1
2 = T 2

1 = 0.
Then det(T ) = T 1

1T
2

2 and tr(T ) = T 1
1 + T 2

2, so we have

Coeff[B11;x1′x1′ ] = 1
6(T 1

1)2(T 1
1 − T 2

2)2
(
(T 1

1)2 + T 1
1T

2
2 − 5(T 2

2)2
)
,

Coeff[B22;x2′x2′ ] = 1
6(T 2

2)2(T 1
1 − T 2

2)2
(
(T 2

2)2 + T 1
1T

2
2 − 5(T 1

1)2
)
,

and thus
T 1

1

(
(T 1

1)2 + T 1
1T

2
2 − 5(T 2

2)2
)

= 0 and

T 2
2

(
(T 2

2)2 + T 1
1T

2
2 − 5(T 1

1)2
)

= 0 .

If T 1
1 = 0, then T 2

2 6= 0 and the second identity fails. Similarly, if T 2
2 = 0, then

T 1
1 6= 0 and the first identity fails. Thus T 1

1 6= 0 and T 2
2 6= 0 and we obtain

(T 1
1)2 + T 1

1T
2

2 − 5(T 2
2)2 = 0 and

(T 2
2)2 + T 1

1T
2

2 − 5(T 1
1)2 = 0 .

Adding the two identities yields 4(T 1
1)2 − 2T 1

1T
2

2 + 4(T 2
2)2 = 0. The only

real solution to this is (T 1
1, T

2
2) = (0, 0) which is false since we assumed the

eigenvalues to be distinct.
Thus the eigenvalues of T (p) must be real and equal. Since T (p) is not a scalar

multiple of the identity, we must have non-trivial Jordan normal form at p. If we
choose coordinates so

T (p) = T 1
1(∂x1 ⊗ dx1 + ∂x2 ⊗ dx2) + ∂x1 ⊗ dx2,
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General examples of Bach-flat manifolds in neutral signature

we obtain that Coeff[B11;x2′x2′ ] = −3(T 1
1)4. Thus T 1

1 = 0 and T is nilpotent.
This completes the proof of Assertion (ii).

Now assume that T is nilpotent. By Lemma 5.4, we may choose coordinates
so T = ∂x1 ⊗ dx2. Examining B11 yields DΓ11

2 = 0. Examining B22 yields
the remaining relation of Assertion (iii-b). A direct computation shows that if the
relations of Assertion (iii-b) are satisfied, then the Riemannian extension is Bach-
flat.

By Theorem 6.1 we may decompose Σ = ST ∪̇OT as the disjoint union of the set
of points where T is a scalar multiple of the identity and the set of points where T is
nilpotent and has non-trivial Jordan normal form. In the real analytic setting, if OT
is non-empty and if Σ is connected, then OT is dense in Σ and T is always nilpotent.
Next we provide an example in the smooth category where this observation fails.

Example 6.2. Let Σ = R2 and let α(x2) be a smooth real valued function which
vanishes to infinite order at x2 = 0 and which is positive for x2 6= 0. Impose
the conditions of Theorem 6.1–(iii-b) and assume that DΓ11

2 = 0 and (DΓ11
1)2 −

DΓ11
1 DΓ12

2 + ∂x1(DΓ11
1 − DΓ12

2) = 0. Let

T (x1, x2) =



(
α(x2) 0

0 α(x2)

)
if x2 ≤ 0,(

0 α(x2)

0 0

)
if x2 ≥ 0 .

One may then compute that B = 0 so this yields a Bach-flat manifold where the
Jordan normal form of T changes at x2 = 0. Furthermore, if we only assume that α
is Ck for k ≥ 2, we still obtain a solution; thus there is no hypo-ellipticity present
when considering the solutions to the equations B = 0.

Remark 6.3. We note that the auxiliary tensor Φ plays no role in the analysis. We
also note that we can express the conditions of Theorem 6.1-(iii-b) in the form

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = DΓ11

1 + c · eβ

for smooth functions c = c(x2) and β = β(x1, x2).

6.2 Deformation of nilpotent Riemannian extensions

Theorem 6.1 permits us to construct connections so the Riemannian extension is
Bach-flat once the nilpotent endomorphism is given. Next, we focus on the reverse

162



6.2 Deformation of nilpotent Riemannian extensions

problem of constructing nilpotent endomorphisms so the Riemannian extension is
Bach-flat once the connection is given; this is, in certain sense, a more natural ques-
tion.

For sake of completeness we include the following statement of the Cauchy-
Kovalevski Theorem, which is an essential argument in proving Theorem 6.7. We
refer to [53] for a discussion of Theorem 6.4.

We assume the following boundary-value problem:

uxn =

n−1∑
j=1

Bj(u, x
′)uxj + c(u, x′) for |x| < r,

u = 0 for |x′| < r, xn = 0,

(6.2)

where Bj = (bk`j ) with j = 1, . . . , n − 1, c = (c1, . . . , cm) and uxk denotes partial
derivative.

Theorem 6.4 (Cauchy-Kovalevski). Assume {Bj}n−1
j=1 and c are real analytic func-

tions. Then, there exist r > 0 and a real analytic function

u =
∑
α

uαx
α

solving the boundary-value problem (6.2).

Roughly speaking, one compute all the derivatives at the origin of a possible so-
lution and uses them to construct the formal Taylor’s series of an anticipated solution.
The proof of the theorem reduces to show that the series converges about the origin.
The convergence of the series could be establish, indirectly, by the method of the
majorant.

If T is a scalar multiple of the identity, then (T ∗Σ, gD,Φ,T ) is half conformally
flat. We focus, therefore, on the case T which is nilpotent henceforth and assume,
unless otherwise noted, that Σ = OT . We work locally. Fix p ∈ Σ and a local system
of coordinates defined near p. We wish to find 0 6= T nilpotent so that (T ∗Σ, gD,Φ,T )
is Bach-flat. Since either T 1

2(p) 6= 0 or T 2
1(p) 6= 0, we assume for the sake of

definiteness that T 1
2(p) 6= 0. This implies that we may expand T near p in the form

T = α(x1, x2)

(
ξ(x1, x2) 1

−ξ2(x1, x2) −ξ(x1, x2)

)
. (6.3)

For sake of simplicity we introduce the following notation to be used in Defini-
tion 6.5 and the proof of Lemma 6.6 and Theorem 6.7. Let φ(x1, x2) be a smooth
function. Then φ(1,0) = ∂x1φ, φ(2,0) = ∂x1∂x1φ and so forth.
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Definition 6.5. We introduce the following operators:

P1(ξ) := −ξ(1,0) + ξ ξ(0,1) + DΓ22
1ξ3 − (2DΓ12

1 − DΓ22
2)ξ2

+ (DΓ11
1 − 2DΓ12

2)ξ + DΓ11
2,

P2(ξ, α) := αα(2,0) + ξ2αα(0,2) − 2ξαα(1,1) + (α(1,0))2 + ξ2(α(0,1))2 − 2ξα(1,0)α(0,1)

− αα(1,0)
(
2ξ(0,1) − 5DΓ22

1ξ2 + 2(4DΓ12
1 − DΓ22

2)ξ − 3DΓ11
1 + 2DΓ12

2
)

+ αα(0,1)
(
2ξξ(0,1) − 6DΓ22

1ξ3 + (10DΓ12
1 − 3DΓ22

2)ξ2

−4(DΓ11
1 − DΓ12

2)ξ − DΓ11
2
)

+ 6ξ4α2(DΓ22
1)2

− 2ξ3α2
(
(DΓ22

1)(0,1) + 9DΓ12
1DΓ22

1 − 3DΓ22
1DΓ22

2
)

− ξ2α2
(
4DΓ22

1ξ(0,1) − 3(DΓ12
1)(0,1) − 2(DΓ22

1)(1,0) + (DΓ22
2)(0,1)

− 12(DΓ12
1)2 − (DΓ22

2)2 − 7DΓ11
1DΓ22

1 +7DΓ12
1DΓ22

2 + 9DΓ12
2DΓ22

1
)

+ ξα2
(
2(3DΓ12

1 − DΓ22
2)ξ(0,1) − (DΓ11

1)(0,1) − 3(DΓ12
1)(1,0)

+(DΓ12
2)(0,1) + (DΓ22

2)(1,0) − 2(DΓ11
1 − DΓ12

2)(4DΓ12
1 − DΓ22

2)

+4DΓ11
2DΓ22

1
)
− α2

(
2(DΓ11

1 − DΓ12
2)ξ(0,1) − (DΓ11

1)(1,0)

+(DΓ12
2)(1,0) − (DΓ11

1)2 + DΓ11
1DΓ12

2 + 3DΓ11
2DΓ12

1 − DΓ11
2DΓ22

2
)
.

Lemma 6.6. Let (Σ, D) be an affine surface. Let T have the form given in Equa-
tion (6.3) and let Φ be arbitrary. The modified Riemannian extension (T ∗Σ, gD,Φ,T )
of Equation (6.1) is Bach-flat if and only if α and ξ are solutions to the partial differ-
ential equations P1(ξ) = 0 and P2(ξ, α) = 0.

Proof. We suppose T is a nilpotent tensor field of type (1, 1). Then tr(T ) = 0
and det(T ) = 0. If we assume that T 1

2(p) 6= 0, then T has the form given in
Equation (6.3). A direct computation shows

B =


B11 B12 0 0

B12 B22 0 0

0 0 0 0

0 0 0 0


and thus only B11, B12 and B22 are relevant. We observe that

Coeff[B11, α
(2,0)] = −4αξ2,

Coeff[B12, α
(2,0)] = −4αξ,

Coeff[B22, α
(2,0)] = −4α .

We therefore define Q1 := B11−B12ξ, Q2 := B11−B22ξ
2 and Q3 := 2Q1−Q2.

We may then express Q3 = −4α2(P1)2 and thus the vanishing of Q3 is equivalent to
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the vanishing of P1. We set P1 = 0 and express ξ(1,0) = F(1,0)(ξ,
DΓ, ξ(0,1)). Differ-

entiating this relation permits us to express ξ(1,1) = F(1,1)(ξ,
DΓ, dDΓ, ξ(0,1), ξ(0,2))

and ξ(2,0) = F(2,0)(ξ,
DΓ, dDΓ, ξ(0,1), ξ(0,2)). Substituting these relations then yields

Q1 = 0 and Q2 = 0. Thus only B11 plays a role. Substituting these relations permits
us to express B11 = −4ξ2P2. The desired result now follows.

Theorem 6.7. Let (Σ, D) be a real analytic affine surface. Then there exist locally
defined nilpotent (1, 1)-tensor fields T such that the modified Riemannian extension
(T ∗Σ, gD,Φ,T ) is Bach-flat.

Proof. Suppose (Σ, D) is real analytic. The operator P1(ξ) of Definition 6.5 takes
the form:

P1(ξ) = −ξ(1,0) + ξξ(0,1) + f(ξ,DΓ) .

Given a real analytic function ξ0(x2), the Cauchy-Kovalevski Theorem shows that
there is a unique real solution to the equation P1(ξ) = 0 with ξ(0, x2) = ξ0(x2).
Once ξ is determined, the operator P2(ξ, α) of Definition 6.5 takes the form

P2(ξ, α) = αα(2,0)−2ξαα(1,1) + ξ2αα(0,2) + F (α, dα;DΓ, dDΓ; ξ, dξ) .

Given real analytic functions α0(x2) and α1(x2), there exists a unique local solution
to the equation P2(ξ, α) = 0 with α(0, x2) = α0(x2) and α(1,0)(0, x2) = α1(x2).
Thus given D, there are many nilpotent T so that (T ∗Σ, gD,Φ,T ) is Bach-flat in this
setting; the auxiliary tensor Φ plays no role in the analysis.

6.3 Invariants of nilpotent Riemannian extensions

6.3.1 VSI manifolds

A pseudo-Riemannian manifold is said to be VSI (vanishing scalar curvature invari-
ants) if all the scalar Weyl invariants (i.e., invariants formed by a complete contraction
of indices in the Riemann curvature tensorRijk` and its covariant derivatives) vanish.

Theorem 6.8. Let (T ∗Σ, gD,Φ,T ) with T 6= 0. The following assertions are equiva-
lent:

(i) (T ∗Σ, gD,Φ,T ) is VSI.

(ii) ‖R‖2 = ‖ρ‖2 = 0.

(iii) ‖ρ‖2 = τ = 0.

(iv) T is nilpotent.
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We will show the different implications in Theorem 6.8 in the rest of this subsec-
tion. Clearly if (T ∗Σ, gD,Φ,T ) is VSI, then ‖R‖2 = ‖ρ‖2 = τ = 0. Thus Assertion (i)
of Theorem 6.8 implies Assertions (ii) and (iii).

Assertions (ii) or (iii) imply Assertion (iv) in Theorem 6.8

A direct computation shows that τ is a quadratic polynomial in the components of
T and that ‖R‖2 and ‖ρ‖2 are fourth order polynomials in the components of T ; the
other variables do not enter. Moreover

τ = −2(detT − (trT )2),

‖ρ‖2 = (detT )2 − 6 detT (trT )2 + 2(trT )4,

‖R‖2 = 4(3(detT )2 − 4 detT (trT )2 + (trT )4) .

Hence ‖ρ‖2 = τ = 0 or ‖ρ‖2 = ‖R‖2 = 0 if and only if det(T ) = tr(T ) = 0.

Example 6.9 (The vanishing of just one invariant). The next example shows that
the conditions ‖R‖2 = τ = 0 do not suffice to get that T is nilpotent nor does the
condition ‖ρ‖2 = 0 suffice to get that T is nilpotent. Indeed, ‖R‖2 = τ = 0 if and
only if det(T ) = (tr(T ))2.

Let r(x1, x2) > 0 be an arbitrary smooth function and let θ be constant. Set

T = r(x1, x2)

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
.

This example is not nilpotent and we have

τ = 2r(x1, x2)2{1 + 2 cos(2θ)},

‖ρ‖2 = r(x1, x2)4{1 + 4 cos(2θ) + 4 cos(4θ)},

‖R‖2 = 4r(x1, x2)4{1 + 2 cos(4θ)} .

Choosing θ = π
3 one has that τ = ‖R‖2 = 0 but ‖ρ‖2 = −3r(x1, x2)4 6= 0. More-

over, setting θ = 1
2 arctan

(
1+
√

7
1−
√

7

)
one has ‖ρ‖2 = 0 but τ = (1 +

√
7)r(x1, x2)2

and ‖R‖2 = 2(2−
√

7)r(x1, x2)4.

Assertion (iv) implies Assertion (i) in Theorem 6.8

In the final step we will show that T is nilpotent implies that (T ∗Σ, gD,Φ,T ) is VSI.
Although this fact already follows from the results in [43, 65], we include a direct
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proof for sake of completeness. Before establishing this implication, we must derive
an additional technical result.

Assume that T is nilpotent. By Lemma 5.4, we may choose coordinates so
T = ∂x1 ⊗ dx2. Let g = gD,Φ,T . Then{gij ,Γijk, Rabcd;e1...ek} are polynomial
expressions in the fiber coordinates x1′ and x2′ whose coefficients depend on the
variables {DΓij

k,Φij} and their derivatives with respect to x1 and x2. In such a
coordinate system, one computes that the possibly non-zero components of the ten-
sor gij , of the Christoffel symbols, and of the curvature R are, up to the usual Z2

symmetries,

g11′ , g22′ , g1′1′ , g1′2′ , g2′2′ , Γ11
1, Γ11

2, Γ11
1′ ,

Γ11
2′ , Γ12

1, Γ12
2, Γ12

1′ , Γ12
2′ , Γ11′

1′ , Γ11′
2′ , Γ12′

1′ ,

Γ12′
2′ , Γ22

1, Γ22
2, Γ22

1′ , Γ22
2′ , Γ21′

1′ , Γ21′
2′ , Γ22′

1′ ,

Γ22′
2′ , R1212, R1211′ , R1212′ , R1221′ , R1222′ , R21′21′ .

(6.4)

Of particular interest is the fact that R21′21′ = −1. Let o(·) be the maximal order
of an expression in the dual variables {x1′ , x2′}. Thus if o(·) = 0, these variables
do not occur, if o(·) = 1, the expression is linear in the variables {x1′ , x2′}, and so
forth. In other words, we define o(x1′) = o(x2′) = 1 and extend o to a derivation.
If o(Rijk`) = 2, then Rijk` is at most quadratic in {x1′ , x2′}; if o(Rijk`) = 1, then
Rijk` is at most linear in {x1′ , x2′}; and if o(Rijk`) = 0, then Rijk` does not involve
{x1′ , x2′}. We have:

o(Γ11
1) = 0, o(Γ11

2) = 0, o(Γ11
1′) = 1, o(Γ11

2′) = 2,

o(Γ12
1) = 0, o(Γ12

2) = 0, o(Γ12
1′) = 1, o(Γ12

2′) = 2,

o(Γ11′
1′) = 0, o(Γ11′

2′) = 0, o(Γ12′
1′) = 0, o(Γ12′

2′) = 0,

o(Γ22
1) = 1, o(Γ22

2) = 0, o(Γ22
1′) = 2, o(Γ22

2′) = 2,

o(Γ21′
1′) = 0, o(Γ21′

2′) = 1, o(Γ22′
1′) = 0, o(Γ22′

2′) = 0,

o(R1212) = 2, o(R1211′) = 1, o(R1212′) = 0, o(R1221′) = 1,

o(R1222′) = 1, o(R21′21′) = 0 .

We define the defect by setting

d(Γij
k) := −

2∑
n=1

{δi,n + δj,n − δk,n}+
2∑

n=1

{δi,n′ + δj,n′ − δk,n′},

d(Ri1i2i3i4;i5...iν ) :=
ν∑

n=1

{δin,1′ + δin,2′ − δin,1 − δin,2} .
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In brief, we count, with multiplicity, each lower index ‘1’ or ‘2’ with a −1 and ‘1′’
or ‘2′’ with a +1 and reverse the sign for upper indices. This will play an important
role in contracting indices subsequently. We then set x = o + d and compute:

x(Γ11
1) = −1, x(Γ11

2) = −1, x(Γ11
1′) = −2, x(Γ11

2′) = −1,

x(Γ12
1) = −1, x(Γ12

2) = −1, x(Γ12
1′) = −2, x(Γ12

2′) = −1,

x(Γ11′
1′) = −1, x(Γ11′

2′) = −1, x(Γ12′
1′) = −1, x(Γ12′

2′) = −1,

x(Γ22
1) = 0, x(Γ22

2) = −1, x(Γ22
1′) = −1, x(Γ22

2′) = −1,

x(Γ21′
1′) = −1, x(Γ21′

2′) = 0, x(Γ22′
1′) = −1, x(Γ22′

2′) = −1,

x(R1212) = −2, x(R1211′) = −1, x(R1212′) = −2, x(R1221′) = −1,

x(R1222′) = −1, x(R21′21′) = 0 .

(6.5)

Lemma 6.10. Suppose that Ri1i2i3i4;j1...jν 6= 0. Then x(Ri1i2i3i4;j1...jν ) ≤ 0. Fur-
thermore, x(Ri1i2i3i4;j1...jν ) = 0 if and only if ν = 0 and Ri1i2i3i4 = ±R21′21′ .

Proof. As a matter of notation, throughout the proof of this lemma ∂j denotes ∂xj
if j ∈ {1, 2} and ∂xj if j ∈ {1′, 2′}. Let Ri1i2i3i4 6= 0. By Equation (6.5),
x(Ri1i2i3i4) ≤ 0 with equality if and only if Ri1i2i3i4 = ±R21′21′ . This establishes
the result if ν = 0. Next we suppose ν = 1 and examine∇R. We expand

Ri1i2i3i4;j = ∂jRi1i2i3i4 −
∑
a

Γji1
a Rai2i3i4 −

∑
a

Γji2
a Ri1ai3i4

−
∑
a

Γji3
a Ri1i2ai4 −

∑
a

Γji4
a Ri1i2i3a .

We examine different cases separately, depending on the kind of addend which gives
the order in the above expression for Ri1i2i3i4;j .

Case 1. o(Ri1i2i3i4;j) = o(Γji1
a Rai2i3i4). (For any other addend of this type the

argument is similar).
In this case, since d(Ri1i2i3i4;j) = d(Γji1

a Rai2i3i4), we have

x(Ri1i2i3i4;j) = x(Γji1
a Rai2i3i4) = x(Γji1

a) + x(Rai2i3i4) .

Suppose r(Ri1i2i3i4;j) ≥ 0. Since Equation (6.5) implies that x(Γji1
a) ≤ 0 and

x(Rai2i3i4) ≤ 0, we conclude that

x(Γji1
a) = x(Rai2i3i4) = 0,
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which is a contradiction since, again by Equation (6.5), x(Γji1
a) = 0 implies that

a ∈ {1, 2′}, while x(Rai2i3i4) = 0 implies that a ∈ {2, 1′}. Thus, we conclude that
necessarily x(Ri1i2i3i4;j) < 0.

Case 2. o(Ri1i2i3i4;j) = o(∂jRi1i2i3i4), with j ∈ {1, 2}.
Note that o(∂jRi1i2i3i4) ≤ o(Ri1i2i3i4) and d(Ri1i2i3i4;j) = d(Ri1i2i3i4) − 1.

Thus,

x(Ri1i2i3i4;j) = o(∂jRi1i2i3i4) + d(Ri1i2i3i4)− 1

≤ o(Ri1i2i3i4) + d(Ri1i2i3i4)− 1 = x(Ri1i2i3i4)− 1 .

Now, since x(Ri1i2i3i4) ≤ 0, we conclude that x(Ri1i2i3i4;j) < 0.

Case 3. o(Ri1i2i3i4;j) = o(∂jRi1i2i3i4), with j ∈ {1′, 2′}.
In this case, a key observation is that o(∂jRi1i2i3i4) < o(Ri1i2i3i4). Indeed,

analyzing the components with ∂jRi1i2i3i4 6= 0 we distinguish two cases: the com-
ponents R1211′ , R1221′ and R1222′ are of the form x1′F1(x1, x2) + F2(x1, x2) and
hence o(∂jRi1i2i3i4) = 0 < 1 = o(Ri1i2i3i4). On the other hand,R1212 is of the form
(x1′)

2F1(x1, x2) + x1′F2(x1, x2) + x2′F3(x1, x2) + x1′x2′F4(x1, x2) + F5(x1, x2)
and therefore o(∂jR1212) = 1 < 2 = o(R1212).

Hence o(∂jRi1i2i3i4) < o(Ri1i2i3i4) and since d(Ri1i2i3i4;j) = d(Ri1i2i3i4) + 1
we have:

x(Ri1i2i3i4;j) = o(∂jRi1i2i3i4) + d(Ri1i2i3i4) + 1

< o(Ri1i2i3i4) + d(Ri1i2i3i4) + 1 = x(Ri1i2i3i4) + 1 .

Now, note that Ri1i2i3i4 6= ±R21′21′ in this case and therefore x(Ri1i2i3i4) < 0, so
we conclude that x(Ri1i2i3i4;j) < 0.

In the second part of the proof, for ν ≥ 2, we proceed by induction in two con-
ditions. In particular, we suppose that o(∂jνRi1i2i3i4;j1...jν−1) < o(Ri1i2i3i4;j1...jν−1)
whenever jν ∈ {1′, 2′} and ∂jνRi1i2i3i4;j1...jν−1 6= 0, and we also suppose that if
Ri1i2i3i4;j1...jν 6= 0 then x(Ri1i2i3i4;j1...jν ) < 0. Next we show that both conditions
hold for ν + 1. We expand

Ri1i2i3i4;j1...jν+1 = ∂jν+1Ri1i2i3i4;j1...jν −
∑
a

Γjν+1i1
a Rai2i3i4;j1...jν

−
∑
a

Γjν+1i2
a Ri1ai3i4;j1...jν −

∑
a

Γjν+1i3
a Ri1i2ai4;j1...jν

−
∑
a

Γjν+1i4
a Ri1i2i3a;j1...jν .
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As in the case ν = 1 we analyze separately the different cases depending on the kind
of addend which gives the order in the expression for Ri1i2i3i4;j1...jν+1 .

Case 1. o(Ri1i2i3i4;j1...jν+1) = o(Γjν+1i1
a Rai2i3i4;j1...jν ). (For any other addend of

this type the argument is similar).
In this case, d(Ri1i2i3i4;j1...jν+1) = d(Γjν+1i1

a Rai2i3i4;j1...jν ), so we have

x(Ri1i2i3i4;j1...jν+1) = x(Γjν+1i1
a Rai2i3i4;j1...jν ) = x(Γjν+1i1

a) + x(Rai2i3i4;j1...jν ) .

Since x(Γjν+1i1
a) ≤ 0 by Equation (6.5) and we are assuming x(Rai2i3i4;j1...jν ) < 0,

we conclude that x(Ri1i2i3i4;j1...jν+1) < 0.

Case 2. o(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ), with jν+1 ∈ {1, 2}.
Using that o(∂jν+1Ri1i2i3i4;j1...jν ) ≤ o(Ri1i2i3i4;j1...jν ) and that, in this case,

d(Ri1i2i3i4;j1...jν+1) = d(Ri1i2i3i4;j1...jν )− 1, we have

x(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν )− 1

≤ o(Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν )− 1

= x(Ri1i2i3i4;j1...jν )− 1 .

Since we are assuming x(Ri1i2i3i4;j1...jν ) < 0, we get x(Ri1i2i3i4;j1...jν+1) < 0.

Case 3. o(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ), with jν+1 ∈ {1′, 2′}.
Suppose that o(∂jν+1Ri1i2i3i4;j1...jν ) < o(Ri1i2i3i4;j1...jν ). Since the defect satis-

fies d(Ri1i2i3i4;j1...jν+1) = d(Ri1i2i3i4;j1...jν ) + 1, then

x(Ri1i2i3i4;j1...jν+1) = o(∂jν+1Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν ) + 1

< o(Ri1i2i3i4;j1...jν ) + d(Ri1i2i3i4;j1...jν ) + 1

= x(Ri1i2i3i4;j1...jν ) + 1 .

Since we are assuming x(Ri1i2i3i4;j1...jν ) < 0, we conclude x(Ri1i2i3i4;j1...jν+1) < 0.

We finish the proof showing that if ∂jν+1Ri1i2i3i4;j1...jν 6= 0 then

o(∂jν+1Ri1i2i3i4;j1...jν ) < o(Ri1i2i3i4;j1...jν ),

where jν+1 ∈ {1′, 2′}. We analyze the three different kind of addends in the expres-
sion of ∂jν+1Ri1i2i3i4;j1...jν showing that the order of each addend is always smaller
than the order of the addend from which it derives. This, in particular, implies the
above inequality.

• For ∂jν+1∂jνRi1i2i3i4;j1...jν−1 , since we are assuming

o(∂jν+1Ri1i2i3i4;j1...jν−1) < o(Ri1i2i3i4;j1...jν−1),
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we have

o(∂jν+1∂jνRi1i2i3i4;j1...jν−1) = o(∂jν∂jν+1Ri1i2i3i4;j1...jν−1)

≤ o(∂jν+1Ri1i2i3i4;j1...jν−1)

< o(Ri1i2i3i4;j1...jν−1) .

• For ∂jν+1 (Γjν i1
a)Rai2i3i4;j1...jν−1 , a direct and straightforward calculation shows

that o(∂`Γij
k)) < o(Γij

k) whenever o(Γij
k) > 0 and ` ∈ {1′, 2′}, so we get

o
(
∂jν+1 (Γjν i1

a)Rai2i3i4;j1...jν−1

)
= o(∂jν+1Γjν i1

a) + o(Rai2i3i4;j1...jν−1)

< o(Γjν i1
a) + o(Rai2i3i4;j1...jν−1)

= o(Γjν i1
a Rai2i3i4;j1...jν−1) .

• Finally, for an addend ot the type Γjν i1
a ∂jν+1

(
Rai2i3i4;j1...jν−1

)
, since we are

assuming o
(
∂jν+1Rai2i3i4;j1...jν−1

)
< o(Rai2i3i4;j1...jν−1) we have

o
(
Γjν i1

a ∂jν+1

(
Rai2i3i4;j1...jν−1

))
= o(Γjν i1

a) + o(∂jν+1Rai2i3i4;j1...jν−1)

< o(Γjν i1
a) + o(Rai2i3i4;j1...jν−1)

= o(Γjν i1
a Rai2i3i4;j1...jν−1) .

Now we are ready to show that Assertion (iv) implies Assertion (i) in Theo-
rem 6.8. Suppose T is nilpotent. LetW be a Weyl scalar invariant formed from the
curvature tensor and its covariant derivatives. By Equation (6.4), we can contract an
index ‘1’ against an index ‘1′’ and an index ‘2’ against an index ‘2′’. We can also
contract indices {1′, 2′} against {1′, 2′}. Consequently, if A = Ri1i2i3i4;j1...jν . . . is
a monomial, then

deg1(A) ≤ deg1′(A) and deg2(A) ≤ deg2′(A),

where deg`(A) denotes the number of times that the index ‘`’ appears in the mono-
mial A. The inequality can, of course, be strict as we can also contract an index ‘1′’
or ‘2′’ against an index ‘1′’ or ‘2′’. This implies that d(A) ≥ 0. Since o(A) ≥ 0, this
implies x(A) ≥ 0. By Lemma 6.10, x(A) ≤ 0. Thus we have x(A) = 0. This implies
A is a power of R21′21′ . Since we cannot contract an index ‘2’ against an index ‘1′’,
we see thatW = 0. This shows Assertion (iv) implies Assertion (i) in Theorem 6.8.
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6.3.2 Invariants which are not of Weyl Type

Let (Σ, D) be an affine surface and let (T ∗Σ, gD,Φ,T ) be the associated Riemann-
ian extension where T is nilpotent. We begin by decomposing the curvature and the
Ricci tensor of (T ∗Σ, gD,Φ,T ). Choose coordinates so T = ∂x1 ⊗ dx2. Let {R, ρ} be
the curvature operator and Ricci tensor of (T ∗Σ, gD,Φ,T ) and let {RD, ρD, ρDs , ρDsk}
be the curvature operator, Ricci tensor, and the symmetric and skew-symmetric Ricci
tensors of (Σ, D). Let V := span{∂x1′ , ∂x2′} be the “vertical” space and let H :=
span{∂x1 , ∂x2} be the “horizontal” space. These are, of course, not invariantly de-
fined. We may then decompose

R(X,Y ) =


RH

H =

(
RXY 1

1 RXY 2
1

RXY 1
2 RXY 2

2

)
RH

V =

(
RXY 1′

1 RXY 2′
1

RXY 1′
2 RXY 2′

2

)

RV
H =

(
RXY 1

1′ RXY 2
1′

RXY 1
2′ RXY 2

2′

)
RV

V =

(
RXY 1′

1′ RXY 2′
1′

RXY 1′
2′ RXY 2′

2′

)
 .

The next result follows by a direct computation.

Lemma 6.11. Take (T ∗Σ, gD,Φ,T ) where T = ∂x1 ⊗ dx2, as above.

(i) RH
V(X,Y ) = 0 for all X,Y vector fields on T ∗Σ, i.e.,

Rabi′
j = 0 for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 .

(ii) {RH
H + (RV

V)t}(X,Y ) = 0 for all X,Y vector fields on T ∗Σ, i.e.,

Rab1
1 +Rab1′

1′ = 0, Rab22 +Rab2′
2′ = 0,

Rab1
2 +Rab2′

1′ = 0, Rab21 +Rab1′
2′ = 0 .

RH
H(∂xi , ∂xj ) = 0 for i < j and (i, j) 6∈ {(1, 2), (2, 1′)} .(
R21′1

1 R21′2
1

R21′1
2 R21′2

2

)
=

(
0 −1

0 0

)
.

(
R121

1 R122
1

R121
2 R122

2

)
=

(
RD121

1 RD122
1

RD121
2 RD122

2

)

+ x1′

(
−DΓ11

2 DΓ11
1 − DΓ12

2

0 DΓ11
2

)
.

tr(RH
H(X,Y )) = 2(π∗ρDsk)(X,Y ) for all X,Y vector fields on T ∗Σ .

(iii) ρi′j = ρi′j′ = 0 for all i, j = 1, 2 .
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(
ρ11 ρ21

ρ12 ρ22

)
= 2ρDs

+

(
0 2x1′

DΓ11
2

2x1′
DΓ11

2 2x1′(
DΓ12

2 − 2DΓ11
1)− 2x2′

DΓ11
2 + Φ11

)
.

(iv) ∇R(i, j, 1, 1; k) +∇R(i, j, 2, 2; k) = 0 unless {i, j, k} ∈ {1, 2} .

The manifold (T ∗Σ, gD,Φ,T ) is a Walker manifold; V := span{∂x1′ , ∂x2′} is a
null parallel distribution of rank two by Equation (6.1) and Equation (6.4). Generi-
cally, this is the only such distribution and V is invariantly defined. We use V as an
additional piece of structure and redefine H := T (T ∗Σ)/V and let π : T (T ∗Σ)→ H
be the natural projection. By Lemma 6.11, πR(X,Y )v = 0 for v ∈ V and thus
πR(X,Y ) descends to a well-defined map that, via an abuse of notation, we con-
tinue to denote by RH

H(X,Y ) of H. Let {X1′ , X2′} be a local frame for V. Choose
{X1, X2} so that

g(X1, X1′) = g(X2, X2′) = 1 and g(X1, X2′) = g(X2, X1′) = 0 . (6.6)

We note that {X1, X2} is not uniquely defined by these relations as we can add an
arbitrary element of V to either X1 or X2 and preserve Equation (6.6). However
{πX1, πX2} is uniquely defined by Equation (6.6). And, in particular, if we take
X1′ = ∂x1′ and X2′ = ∂x2′ , then we may take X1 = ∂x1 and X2 = ∂x2 .

We use Lemma 6.11 to introduce some additional quantities.

(1) Since ρ(X,Y ) = 0 if either X or Y belongs to V, ρ descends to a map from
H ⊕ H to R that we shall denote by ρH ∈ S2(H∗). Let π : T ∗Σ → Σ. Since
π∗(V) = 0, π∗ : H→ TΣ. If DΓ11

2 = 0, if 2DΓ11
2 = DΓ12

2, and if Φ11 = 0,
then ρH = 2π∗ρDs .

(2) Let Ω(X,Y ) = tr(RH
H(X,Y )). Then Ω(X,Y ) = 0 if either X or Y belongs

to V so Ω descends to an alternating bilinear map from H ⊕ H to R that we
shall denote by ΩH ∈ Λ2(H∗). We have ΩH = 2π∗ρDsk.

(3) As V is parallel, ∇R(X,Y ;Z) maps V to V. Consequently, ∇R(X,Y ;Z)
extends to an endomorphism (∇R)H(X,Y ;Z) of H. A direct computation
shows that tr((∇R)H(X,Y ;Z)) = 0 if X , Y , or Z belongs to V. We may
therefore regard tr((∇R)H(X,Y ;Z)) ∈ Λ2(H)⊗H∗. Assuming that ΩH 6= 0,
we may decompose tr((∇R)H) = ωH ⊗ ΩH for ωH ∈ H∗. Moreover, one has
dωH = ΩH.
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Definition 6.12. Suppose that we are at a point of (T ∗Σ, gD,Φ,T ) where ρH defines a
non-degenerate symmetric bilinear form on H. We may then define

β1 := ‖ΩH‖2ρH =
(R121

1 +R122
2)2

ρ11ρ22 − ρ12ρ12
.

If we also assume that ΩH 6= 0 (i.e., ρDsk 6= 0) or, equivalently, that β1 6= 0, then ωH

is well-defined and we may set

β2 := ‖ωH‖2ρH .

We have

ωH
1 =

R121
1

;1 +R122
2

;1

R121
1 +R122

2
, ωH

2 =
R121

1
;2 +R122

2
;2

R121
1 +R122

2
,

β2 :=
ρH22ω

H
1 ω

H
1 + ρH11ω

H
2 ω

H
2 − 2ρH12ω

H
1 ω

H
2

ρH11ρ
H
22 − ρH12ρ

H
12

.

It is obvious from the discussion given above that β1 and β2 are isometry invari-
ants of (T ∗Σ, gD,Φ,T ) where defined.

Generically, β1 and β2 are very complicated expressions which involve non-
trivial dependence on the fiber variables and which involve the endomorphism Φ.
It is interesting to note that if we consider a nilpotent (1,1)-tensor field T given by
T = ∂x2 ⊗ dx1, then proceeding in a completely analogous way as in Lemma 6.11
one can construct the invariants β1 and β2. In the next section we will present exam-
ples of Bach-flat manifolds where both invariants are calculated.

Remark 6.13. The facts that (RH
H) ∈ Λ2(H∗), ωH = tr(∇R)H/ΩH ∈ H∗ and dωH =

ΩH is, of course, not true for a general Walker manifold. This observation perhaps can
be useful in studying when a general Walker manifold is one of our special examples.
All of these are pull-backs of similar identities on the base.

6.4 Examples of Bach-flat manifolds

The existence of a null distribution V on a four-dimensional manifold (N, g) of neu-
tral signature defines a natural orientation on N : the one which, for any basis {u, v}
of V, makes the bivector u ∧ v self-dual (see Chapter 1 and [49]). We consider
on T ∗Σ the orientation which agrees with V = ker(π∗), and thus self-duality and
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6.4 Examples of Bach-flat manifolds

anti-self-duality are not interchangeable. Let

e1 = ∂x1 + 1
2(1− (gD,Φ,T )11)∂x1′ ,

e2 = ∂x2 − (gD,Φ,T )12∂x1′ + 1
2(1− (gD,Φ,T )22)∂x2′ ,

e3 = ∂x1 − 1
2(1 + (gD,Φ,T )11)∂x1′ ,

e4 = ∂x2 − (gD,Φ,T )12∂x1′ −
1
2(1 + (gD,Φ,T )22)∂x2′

be an orthonormal basis of (T ∗Σ, gD,Φ,T ) with ε1 = ε2 = 1 = −ε3 = −ε4

(where εi = g(ei, ei)). Note that e1 ∧ · · · ∧ e4 agrees with the orientation deter-
mined by V = ker(π∗). Then, the spaces of self-dual and anti-self-dual 2-forms,
Λ2
± = 〈

{
E±1 , E

±
2 , E

±
3

}
〉, have induced basis

E±1 =
e1 ∧ e2 ± e3 ∧ e4

√
2

, E±2 =
e1 ∧ e3 ± e2 ∧ e4

√
2

, E±3 =
e1 ∧ e4 ∓ e2 ∧ e3

√
2

.

Here observe that the Hodge star operator satisfies

ei ∧ ej ∧ ?(ek ∧ e`) = (δikδ
j
` − δ

i
`δ
j
k) εiεj e

1 ∧ e2 ∧ e3 ∧ e4 .

Further note that 〈〈E±1 , E
±
1 〉〉 = 1, 〈〈E±2 , E

±
2 〉〉 = −1, 〈〈E±3 , E

±
3 〉〉 = −1, where 〈〈·, ·〉〉

is the inner product defined in Chapter 1, and let W±ij = W±(E±i , E
±
j ) denote the

components of the self-dual and anti-self-dual parts of the Weyl curvature tensor.
Let 0 6= T = T j i(x

1, x2) be a nilpotent tensor field of type (1, 1) as in Equa-
tion (6.3). A straightforward calculation shows that

W−11 = −1

2
α(x1, x2)2(ξ(x1, x2)2 + 1)2, W+

12 = −2ρDsk(∂x1 , ∂x2) .

Therefore, W− is always non-null and the non-symmetry of ρD guarantees that
(T ∗Σ, gD,Φ,T ) is not half conformally flat.

We recall that a manifold is conformally Einstein if and only if the equation

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (6.7)

has a positive solution, where the conformal metric is given by g = ϕ−2g. It was
shown in [62, 72] that any four-dimensional conformally Einstein manifold satisfies

(i) div4W −W (·, ·, ·,∇ logϕ) = 0, (ii) B = 0 . (6.8)

Conditions (i)–(ii) above are also sufficient to be conformally Einstein if (N, g) is
weakly-generic. In our case, it is easy to check that Riemannian extensions gD,Φ,T
for T nilpotent are not weakly-generic (see Chapter 1).
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General examples of Bach-flat manifolds in neutral signature

From now on we introduce the notation:

E = 2 Hesϕ +ϕρ− 1

4
{2∆ϕ+ ϕ τ}g and Ẽ = div4W −W (·, ·, ·,∇ logϕ) .

For the Riemannian extension (T ∗Σ, gD,Φ,T ), we compute

E1′1′ = 2∂x1′∂x1′ϕ, E1′2′ = 2∂x1′∂x2′ϕ, E2′2′ = 2∂x2′∂x2′ϕ,

to show that any solution of Equation (6.7) must be of the form

ϕ(x1, x2, x1′ , x2′) = A(x1, x2)x1′ +B(x1, x2)x2′ + ψ(x1, x2), (6.9)

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2).
This shows that any solution of the conformally Einstein equation on (T ∗Σ, gD,Φ,T )
is of the form ϕ = ιX + ψ ◦ π, where ιX is the evaluation of a vector field X =
A∂x1 +B∂x2 on Σ, ψ ∈ C∞(Σ) and π : T ∗Σ→ Σ is the projection.

Although in some cases we shall discuss some interesting families of anti-self-
dual and conformally Einstein manifolds, our main purpose is to construct strictly
Bach-flat examples with DT 6= 0 (examples with T parallel were previously con-
structed in Chapter 5).

6.4.1 Locally homogeneous setting

For a Type A or Type B homogeneous affine surface we investigate the existence of
nilpotent tensor fields so that the corresponding nilpotent Riemannian extension is
Bach-flat. We begin with a simple case.

Example 6.14. Setting

DΓ11
1 = 0, DΓ11

2 = 0, DΓ12
1 = 1, DΓ12

2 = 1, DΓ22
1 = 0, DΓ22

2 = 0,

we have a Type A affine surface which is not flat since the Ricci tensor of D is
ρD = −(dx1 − dx2)2. Despite of the Bach-flat condition is quite complicated, there
exist many examples of nilpotent tensor fields of type (1, 1) which give rise to Bach-
flat manifolds. For instance, if αi’s are smooth functions of one variable, then the
following nilpotent endomorphisms lead to Bach-flat manifolds:

T := α2(x2)

√
e2x1 + α1(x2)

{
∂x1 ⊗ dx2

}
,

T̃ := α2(x1)

√
e2x2 + α1(x1)

{
∂x2 ⊗ dx1

}
.
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6.4 Examples of Bach-flat manifolds

In the rest of this subsection we consider nilpotent tensor fields T ∈M2(R), i.e.,
T has constant entries in the given coordinates and analyze TypeA and Type B affine
surfaces by separate.

Example 6.15. Let D be a Type A structure on R2, i.e., the Christoffel symbols of
D are constant. The Ricci tensor is symmetric in this setting. Let 0 6= T ∈ M2(R)
be nilpotent. Make a linear change of coordinates to ensure T = ∂x1 ⊗ dx2. A direct
computation shows B = 0 if and only if DΓ11

2 = 0 and (DΓ11
1)2−DΓ11

1 DΓ12
2 =

0.
If (T ∗Σ, gD,Φ,T ) is Bach-flat and Φ = 0, then (T ∗Σ, gD,Φ,T ) is anti-self-dual

and conformally Einstein. Indeed, if DΓ11
1 = DΓ11

2 = 0 and DΓ12
2 = 0, then the

conformal metric ϕ−2gD,Φ,T is Einstein just taking ϕ = x1′ e
−DΓ12

1x2 . If DΓ11
1 =

DΓ11
2 = 0 and DΓ12

2 6= 0 then ϕ−2gD,Φ,T is an Einstein metric with conformal
factor ϕ = e−

DΓ12
2x1+DΓ12

1x2 . If DΓ11
2 = 0 and DΓ11

1 = DΓ12
2 then again

ϕ = x1′ e
−DΓ12

1x2 defines an Einstein conformal metric.

Next we construct strictly Bach-flat Riemannian extensions considering the case
DΓ11

1 = DΓ11
2 = 0 and assuming DΓ12

2 6= 0. In this case,

∂x1′W
+
11 = ∂x1Φ11(x1, x2)− 2DΓ12

2Φ11(x1, x2) .

A straightforward calculation shows that the possible conformal functions take the
form ϕ = µ e−

DΓ12
2x1+DΓ12

1x2 (with µ ∈ R) and, in such a case,

E22 = ϕ(x1, x2, x1′ , x2′)Φ11(x1, x2) .

Hence, we conclude that if

Φ11(x1, x2) 6= 0 and ∂x1Φ11(x1, x2)− 2DΓ12
2Φ11(x1, x2) 6= 0,

i.e., Φ11(x1, x2) 6= e2DΓ12
2x1P (x2), where P is a smooth function depending only

on the coordinate x2, then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat.
Moreover, since (D∂x1

T )∂x2 = −DΓ12
2∂x1 , we have DT 6= 0 in this case.

Remark 6.16. Let (Σ, D) be a TypeA surface. Since any TypeA surface has ρDsk =
0, the invariant β1 = 0 whenever it is defined. Hence the invariant β2 is not defined
in this setting.

Example 6.17. Let D be a Type B structure on R+×R, i.e., the Christoffel symbols
of D take the form DΓij

k = (x1)−1Cij
k. Let 0 6= T ∈ M2(R) be nilpotent. The

map (x1, x2) → (x1, ax2 + bx1) defines an action of the “ax + b" group on such
structures and modulo such an action, we may assume T takes one of the following
two forms:
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General examples of Bach-flat manifolds in neutral signature

(1) T = ∂x1 ⊗ dx2. A direct computation shows that (T ∗Σ, gD,Φ,T ) is Bach-flat if
and only if C11

2 = 0 and (C11
1 − 1)(C11

1 − C12
2) = 0.

(2) T = ∂x2 ⊗ dx1. A direct computation shows that (T ∗Σ, gD,Φ,T ) is Bach-flat if
and only if C22

1 = 0 and C22
2(C12

1 − C22
2) = 0.

Case (1). In this case, ρD is symmetric if and only if C12
1 + C22

2 = 0.

Case (1.1) C11
2 = 0, C11

1 = 1

First of all, note that DT 6= 0 in this case since (D∂x2
T )∂x1 = −C12

2

x1
∂x1 and

(D∂x1
T )∂x2 = 1−C12

2

x1
∂x1 .

Assume that ρD is non-symmetric, i.e., C12
1 + C22

2 6= 0. Then (T ∗Σ, gD,Φ,T )
is not half conformally flat. Moreover, a straightforward calculation shows that the
possible conformal functions take the form ϕ = (x1)2−C12

2
P (x2), where P is a

smooth function depending only on the coordinate x2 and, in such a case,

−2(x1)3 Ẽ121 = C12
1(5− 4C12

2)− C22
2 .

Hence, ρD non-symmetric and C22
2 6= C12

1(5 − 4C12
2) imply (T ∗Σ, gD,Φ,T ) is

strictly Bach-flat.

If ρD is non-symmetric and C22
2 = C12

1(5 − 4C12
2), we distinguish two cases

depending on C12
2 equals 1 or not. If C12

2 = 1 then a straightforward calcula-
tion shows that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if Φ11(x1, x2) =

A(x2) − B(x2)
x1

+ 4C22
1

(x1)2
and the possible conformal functions take the form ϕ =

x1P (x2), where A, B and P are smooth functions depending only on the coordinate
x2 satisfying

2P ′′(x2) +A(x2)P (x2) = 0, 2C12
1P ′(x2) +B(x2)P (x2) = 0 .

IfC12
2 6= 1, then it is easy to check that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and

only if Φ11(x1, x2) = 4(C22
1+2(C12

1)2(C12
2−1))

(x1)2
and the possible conformal functions

take the form ϕ = µ(x1)2−C12
2
, where µ ∈ R.

Remark 6.18. In a more general setting, without imposing the non-symmetric con-
dition on ρD, assume C12

2 6= 1 and Φ11(x1, x2) = P (x2) 6= 0, where P is a smooth
function depending only on the coordinate x2 with P ′ 6= 0. In this case, we compute
∂x1′∂x1∂x1

(
(x1)3W+

11

)
= −4(C12

2 − 1)P (x2) so (T ∗Σ, gD,Φ,T ) is not half confor-
mally flat. Moreover, a straightforward calculation shows that the possible conformal
functions take the form ϕ = (x1)2−C12

2
µ (with µ ∈ R) and, in such a case,

∂x2 (E22) = ϕ(x1, x2, x1′ , x2′) ∂x2Φ11(x1, x2) .
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6.4 Examples of Bach-flat manifolds

Therefore, we conclude that if C12
2 6= 1 and Φ11(x1, x2) = P (x2) 6= 0 with

P ′(x2) 6= 0, then (T ∗Σ, gD,Φ,T ) is strictly Bach-flat.

Invariants β1 and β2 in Case (1.1) (C11
2 = 0, C11

1 = 1)

In this case, assuming that ρH is non-degenerate, one has

β1 = (C12
1 + C22

2)2∆−1

where
∆ = 2(2− C12

2)C12
2(x1)2Φ11 − 4(2− C12

2)2C12
2x1x1′

− (4C12
2 + 1)(C12

1)2 + 4(C12
2 − 2)C22

1(C12
2)2

− (C22
2)2 + 2(1− 2(C12

2 − 1)C12
2)C12

1C22
2 .

It now follows that β1 = 0 if and only if the Ricci tensor ρD of (Σ, D) is symmetric.
Moreover β1 is a non-zero constant if and only if either C12

2 = 0, in which case
β1 = − (C12

1+C22
2)2

(C12
1−C22

2)2
, or C12

2 = 2, and then β1 = − (C12
1+C22

2)2

(3C12
1+C22

2)2
. Further, if β1 is

non-zero then one has

β2 = {(C12
2 + 3)2(x1)2Φ11 + 2(C12

2 − 2)(C12
2 + 3)2x1x1′

− 2(C12
2 + 3)2C12

2C22
1 − 2((C12

2 − 1)C12
2 + 3)(C22

2)2

− 2((4C12
2 + 9)C12

2 + 6)(C12
1)2

− 2((3C12
2 − 4)C12

2 − 9)C12
1C22

2}∆−1,

which is generically non-constant.

Case (1.2) C11
2 = 0, C12

2 = C11
1

In this case DT is determined by

(D∂x2
T )∂x1 = −C11

1

x1
∂x1 , (D∂x2

T )∂x2 =
C12

1 − C22
2

x1
∂x1 +

C11
1

x1
∂x2 .

If ρD is non-symmetric, i.e C12
1 + C22

2 6= 0, then (T ∗Σ, gD,Φ,T ) is not half
conformally flat and, moreover, a straightforward calculation shows that the possible
conformal functions take the form ϕ = (x1)C11

1
P (x2), where P is a smooth function

depending only on the coordinate x2. In such a case,

E12 = (x1)−2(C22
2 − C12

1)ϕ(x1, x2, x1′ , x2′) .
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Hence, if ρD is non-symmetric andC22
2 6= C12

1 then (T ∗Σ, gD,Φ,T ) is strictly Bach-
flat.

Now, if ρD is non-symmetric and C22
2 = C12

1 then a straightforward calcula-
tion shows that (T ∗Σ, gD,Φ,T ) is conformally Einstein if and only if Φ11(x1, x2) =

A(x2) − B(x2)
x1

+ 2C22
1(C11

1+1)
(x1)2

and the possible conformal functions take the form

ϕ = (x1)C11
1
P (x2), where A, B and P are smooth functions depending only on the

coordinate x2 satisfying

2P ′′(x2) +A(x2)P (x2) = 0, 2C12
1P ′(x2) +B(x2)P (x2) = 0 .

Invariants β1 and β2 in Case (1.2) (C11
2 = 0, C12

2 = C11
1)

Assume that ρH is non-degenerate. Then

β1 = (C12
1 + C22

2)2∆−1

where

∆ = 2C11
1(x1)2Φ11 − 4(C11

1)2x1x1′ − (4(C11
1)2 + 1)(C12

1)2 − (C22
2)2

− 4C11
1C22

1 + 2C12
1C22

2 .

Therefore β1 = 0 if and only if the Ricci tensor of (Σ, D) is symmetric. Moreover,
one has that β1 is a non-zero constant if and only if C11

1 = 0, in which case β1 =

− (C12
1+C22

2)2

(C12
1−C22

2)2
. Furthermore, if ρH is non-degenerate and β1 6= 0, then

β2 = {4(C11
1 + 1)2(x1)2Φ11 − 8(C11

1 + 1)2C11
1(x1)x1′

− 2(C11
1 + 2)(C22

2)2 − 8(C11
1 + 1)2C22

1

− 2(C11
1(8C11

1 + 9) + 2)(C12
1)2 + 4(3C11

1 + 2)C12
1C22

2}∆−1 .

Case (2). In this case, ρD is symmetric if and only if C12
1 = 0.

Case (2.1) C22
1 = 0, C22

2 = 0

If ρD is not symmetric, i.e.,C12
1 6= 0, then (T ∗Σ, gD,Φ,T ) is not half conformally

flat. Moreover, a straightforward calculation shows that the possible conformal func-

tions take the form ϕ = e−
C12

1x2

x1 P (x1), where P is a smooth function depending
only on the coordinate x1 and, in such a case,

∂x2

(
(x1)3 e

C12
1x2

x1 E12

)
= −4(C12

1)2P (x1) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-
flat. Moreover, DT 6= 0 since (D∂x1

T )∂x2 = −C12
1

x1
∂x2 .
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6.4 Examples of Bach-flat manifolds

Invariants β1 and β2 in Case (2.1) (C22
1 = 0, C22

2 = 0)

Assuming that ρH is non-degenerate, one has

β1 = (C12
1)2∆−1

where

∆ = (C12
1)2{−2(x1)2Φ22 − 4C12

1x1x2′ − 4C11
1C12

2 + 4C11
2C12

1 − 1} .

One now checks that β1 is never constant in this case. Moreover, if ρH is non-
degenerate and β1 6= 0, then

β2 = (C12
1)2{(x1)2Φ22 + 2C12

1x1x2′ − 12C12
2 − 2C11

2C12
1 − 4

− 2(C11
1)2 − 8(C12

2)2 − 6(C12
2 + 1)C11

1}∆−1 .

It follows that β2 is constant if and only if 2C11
1 + 4C12

2 + 3 = 0, in which case
β2 = −1

2 .

Case (2.2) C22
1 = 0, C22

2 = C12
1

If ρD is non-symmetric, i.e., C12
1 6= 0, then (T ∗Σ, gD,Φ,T ) is not half confor-

mally flat. A straightforward calculation shows that the possible conformal functions

take the form ϕ = e
C12

1x2

x1 P (x1), where P is a smooth function depending only on
the coordinate x1 and, in such a case,

(x1)2E12 = −2C12
1ϕ(x1, x2, x1′ , x2′) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-
flat. Moreover, (D∂x1

T )∂x2 = −C12
1

x1
∂x2 and therefore DT 6= 0.

Invariants β1 and β2 in Case (2.2) (C22
1 = 0, C22

2 = C12
1)

In this case, ρH is non-degenerate if and only if C12
1C12

2 6= 0. We get

β1 = −(C12
2)−2,

β2 = −
(
(x1)2Φ22 − 2C12

1x1x2′ − 4(C12
2)2 − 2C12

2
)

(C12
2)−2 .

In contrast with the previous cases, β1 is constant while β2 is never constant.
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6.4.2 Non-locally homogeneous setting

Example 6.19. Impose the relations of Remark 6.3 and set

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = −∂x1β + ceβ,

for smooth functions c = c(x2) and β = β(x1, x2). We consider the nilpotent
endomorphism given by T 1

1 = 0, T 2
2 = 0, T 2

1 = 0 and T 1
2 = ef , where f is a

function f(x1, x2). This yields Bach-flat manifold if and only if

0 = ∂x1f
(

2ceβ + ∂x1β
)
− 2(∂x1f)2 − ∂x1∂x1f .

In particular, any function f = f(x2) will work in this instance. Further, assume that
c = 0 and ∂x1DΓ12

1 = 0. In this case, ρD is symmetric if and only if ∂x1DΓ22
2 +

2∂x1∂x2β = 0.
If ∂x1DΓ22

2+2∂x1∂x2β 6= 0 then (T ∗Σ, gD,Φ,T ) is not half conformally flat since
W+

21 = −∂x1DΓ22
2 − 2∂x1∂x2β. Moreover, a straightforward calculation shows that

the possible conformal functions take the form ϕ = e−β(x1,x2) P (x2), where P is a
smooth function depending only on the coordinate x2 and, in such a case,

E12 = −ϕ(x1, x2, x1′ , x2′)(∂x1
DΓ22

2 + 2∂x1∂x2β) .

Hence, we conclude that if ρD is non-symmetric then (T ∗Σ, gD,Φ,T ) is strictly Bach-
flat. Moreover, in this case, DT = 0 if and only if ∂x1β = 0 and DΓ12

1 − DΓ22
2 +

f ′ = 0.

Let us impose further relations interchanging the roles of the indices to specialize
the remaining three Christoffel symbols:

DΓ11
2 = 0, DΓ11

1 = −∂x1β, DΓ12
2 = −∂x1β + ceβ, for c = c(x2),

DΓ22
1 = 0, DΓ22

2 = −∂x2 β̃, DΓ12
1 = −∂x2 β̃ + c̃eβ̃, for c̃ = c̃(x1) .

Then, in addition, we have the solutions T = ef̃∂x2 ⊗ dx1 where f̃ is a function
f̃(x1, x2) satisfying

0 = ∂x2 f̃(2c̃eβ̃ + ∂x2 β̃)− 2(∂x2 f̃)2 − ∂x2∂x2 f̃ .
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Resumo

Un problema central na xeometría de Riemann é a existencia de métricas “óptimas”,
é dicir, aquelas cuxa curvatura ten a propiedade de ser a mellor distribuída uniforme-
mente sobre unha variedade. O enfoque para determinar tales métricas xeralmente
céntrase en atopar métricas críticas para algúns funcionais naturais de curvatura.

SexaM unha variedade compacta e τg a curvatura escalar dunha métrica pseudo-
Riemanniana g en M . O funcional de curvatura máis simple e máis natural definido
sobre o espazo de métricas vén dado pola integral da curvatura escalar: S : g 7→
S(g) =

∫
M τg d volg, onde d volg é o elemento de volume determinado pola métrica

g. Unha métrica g dise S-crítica cando o seu tensor de Ricci ρg − 1
2τgg se anula,

onde ρg denota o tensor de Ricci de (M, g). Como a curvatura do funcional S é
sensíbel a reescalamentos da métrica, a súa acción restrínxese a métricas de volume
constante. As métricas críticas correspondentes son as métricas de Einstein. Polo
tanto, poderíase argumentar que as métricas de Einstein, é dicir, aquelas cuxo tensor
de Ricci é proporcional á métrica, son as métricas óptimas máis naturais sobre uhna
variedade pseudo-Riemanniana.

As métricas de Einstein son dalgunha maneira insignificantes en dimensión dous.
O teorema de Gauss-Bonnet mostra que S(g) = 4πχ[M ], onde χ[M ] denota a ca-
racterística de Euler de M , e por conseguinte tódalas métricas son S-críticas en di-
mensión dous. O caso en dimensión tres é moi ríxido e as métricas de Einstein son
xusto aquelas de curvatura seccional constante. De feito, son localmente isométricas
á pseudo-esfera, ao espazo pseudo-Euclidiano ou ao espazo pseudo-hiperbólico. A
primeira situación non trivial dáse en dimensión catro. A clasificación de métricas
de Einstein en dimensión catro é un problema amplamente aberto e unha pregunta
central é a existencia de tales métricas.

Existen diversas estratexias para construír métricas de Einstein. Unha constru-
ción clásica consiste en deformar unha métrica dada por un factor conforme tal que
a métrica se convirta nunha métrica de Einstein tras un axeitado reescalamento con-
forme. Unha variedade de Riemann (M, g) dise conforme Einstein se este enfoque
ten éxito, é dicir, se existe un representante Einstein na clase conforme [g]. Unha
segunda estratexia máis recente fai uso do fluxo de Ricci, o cal baixo condicións
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apropiadas converxe a unha métrica de Einstein. Non obstante, existen métricas que
permanecen invariantes (salvo reescalamentos e difeomorfismos) baixo o fluxo de
Ricci: os solitóns de Ricci.

Brinkmann mostrou en [14] que unha variedade (M, g) de dimensión n é con-
forme Einstein se, e só se, a ecuación

(n− 2) Hesϕ +ϕρ− 1

n
{(n− 2)∆ϕ+ ϕ τ}g = 0 (1)

ten solución positiva. A pesar de que en dimensión dous a ecuación é trivial, en
dimensións superiores a súa integración é sorprendetemente difícil e ademais esta é
sobredeterminada na maioría dos casos. Ademais unha métrica conforme Einstein
no caso Riemanniano, se existe, é única salvo homotecias [14, 106]. Un problema
importante é caracterizar espazos conforme Einstein por certas ecuacións tensoriais
máis manexábeis.

Sexa (M, g) unha variedade conforme Einstein e supoñamos que g = e2σg é
Einstein. Como as métricas de Einstein teñen tensor de Weyl harmónico tense tri-
vialmente que divW = 0, onde W denota o tensor curvatura de Weyl da variedade
(M, g).O feito de que o tensor de Weyl se reescale baixo transformacións conformes
implica que (div4W )(X,Y, Z) + W (X,Y, Z,∇σ) = 0 é unha condición necesaria
para que (M, g) sexa conforme Einstein. Unha segunda condición necesaria obtense
da seguinte maneira: sexaW : g 7→ W(g) =

∫
M ‖W‖

2 dvolg o funcional curvatura
determinado pola norma L2 do tensor curvatura de Weyl conforme. As métricas
W-críticas foron caracterizadas por Bach en [6], onde mostra que unha métrica de

dimensión catro éW-crítica se, e só se, o tensor de Bach B = div2 div4W +
1

2
W [ρ]

é identicamente nulo. Claramente toda métrica de Einstein resulta Bach-chá (B = 0).
Máis aínda, unha característica específica en dimensión catro é queW é un invarian-
te conforme e polo tanto as métricas conforme Einstein son métricas Bach-chás en
dimensión catro.

Kozameh, Newman e Tod mostraron en [72] que ás dúas condicións necesarias:

(i) B = 0, (ii) (div4W )(X,Y, Z) +W (X,Y, Z,∇σ) = 0, (2)

son suficientes para ser conforme Einstein se (M, g) é debilmente-xenérica, é di-
cir, o tensor de Weyl visto como unha aplicación TM →

⊗3 TM é inxectiva. No
caso Kähler a situación é simple, pois toda métrica Kähler Bach-chá é conforme Ein-
stein [48]. A pesar de todos estes resultados, a clasificación de variedades conforme
Einstein é, a día de hoxe, un problema aberto, con tan só resultados parciais. Ver por
exemplo [75] para unha clasificación de variedades produto conforme Einstein.

O noso propósito na Primeira parte desta monografía é abordar a clasificación
de métricas conforme Einstein en dimensión catro para o caso homoxéneo. A ho-
moxeneidade permite unha simplificación da ecuación conforme Einstein, reducindo
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a Ecuación (1) a un sistema de ecuacións alxébricas mediante o uso das condicións
na Ecuación (2). As métricas de Einstein homoxéneas en dimensión catro foron des-
critas por Jensen [70], quen mostrou que no caso Riemannianno estas son simétricas.
Polo tanto, son localmente un “space form” real ou complexo, ou son localmente
un produto de duás superficies de igual curvatura de Gauss constante. A situación
conforme Einstein é máis rica, por iso o Capítulo 2 destínase a probar o seguinte
resultado:

Theorem 2.1. Sexa (M, g) unha variedade de Riemann de dimensión catro ho-
moxénea, conforme Einstein, completa e simplemente conexa. Entón (M, g) é lo-
calmente simétrica ou é homotética a un dos seguintes grupos de Lie determinados
polas seguintes álxebras de Lie solubles:

(i) A álxebra de Lie gα = Re4 n r3 dada por

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) A álxebra de Lie gα = Re4 n h3 dada por

[e1, e2] = e3, [e4, e1] = e1−αe2, [e4, e2] = αe1+e2, [e4, e3] = 2e3 .

(iii) A álxebra de Lie gα = Re4 n r3 dada por

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

Aquí {e1, . . . , e4} é unha base ortonormal. Ademais, os grupos de Lie (Gα, 〈 · , · 〉)
na afirmación (ii) son semi-conformemente chans.

En resumo, para métricas conforme Einstein en dimensión catro, a fórmula da
sinatura de Hirzebruch mostra que as métricas auto-duais e anti-auto-duais son tamén
Bach-chás. Como consecuencia directa da análise no Capítulo 2, obtemos unha clasi-
ficación de métricas homoxéneas que son estritamente Bach-chás, é dicir, aquelas
métricas que non son conforme Einstein, nin semi-conformemente chás:

Theorem 2.4. Sexa (M, g) unha variedade de Riemann de dimensión catro ho-
moxénea, Bach-chá estrita, completa e simplemente conexa. Entón (M, g) é ho-
motética a un dos grupos de Lie determinados polas seguintes álxebras de Lie solu-
bles:

(i) A álxebra de Lie g = Re4 n e(1, 1) dada por

[e2, e3] = e1, [e1, e3] = (2 +
√

3) e2,

[e4, e1] =
√

6 + 3
√

3 e1, [e4, e2] =
√

6 + 3
√

3 e2 .
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(ii) A álxebra de Lie g = Re4 n h3 dada por

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

Aquí {e1, . . . , e4} é unha base ortonormal.

É un feito notable que os dous exemplos do Teorema 2.4 foron previamente cons-
truídos por Abbena, Garbiero e Salamon [1].

Un paso crucial na proba do Teorema 2.1 e na proba do Teorema 2.4 é a des-
crición que fai Bérard-Bergery [9] das variedades homoxéneas de Riemann en dimen-
sión catro: estas son, ou simétricas, ou un grupo de Lie cunha métrica Riemannia-
na invariante pola esquerda. Claramente, unha afirmación análoga non funciona
nos casos Lorentziano e de sinatura neutra, pois os espazos homoxéneos pseudo-
Riemannianos non son necesariamente redutivos. Os espazos homoxéneos non re-
dutivos en dimensión 4 foron clasificados por Fels e Renner [54]. Neste traballo,
empregamos explicitamente a súa clasificación para determinar todalas métricas con-
forme Einstein non redutivos. No Capítulo 3 o teorema principal é o seguinte:

Theorem 3.1. Sexa (M, g) un espazo homoxéneo de dimensión catro conforme Ein-
stein e non redutivo. Entón (M, g) é Einstein, localmente conformemente chan ou
localmente isométrico a:

(i) (R4, g) coa métrica determinada por

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+ b dx2 ◦ dx2 − 2(ax4 − c) dx2 ◦ dx3 + 2a dx2 ◦ dx4,

onde a, b e c son constantes arbitrarias tales que ab 6= 0.

(ii) (R4, g) coa métrica determinada por

g = (4b(x2)2 + a) dx1 ◦ dx1 + 4bx2 dx1 ◦ dx2

− (4ax2x4 − 4cx2 + a) dx1 ◦ dx3 + 4ax2 dx1 ◦ dx4

+b dx2 ◦ dx2−2(ax4 − c) dx2 ◦ dx3+2a dx2 ◦ dx4− 3a
4 dx3 ◦ dx3,

onde a, b e c son constantes arbitrarias tales que ab 6= 0.

(iii) (R4, g) coa métrica determinada por

g = −2ae2x4 dx1 ◦ dx3 + ae2x4dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde a, b, c e q son constantes arbitrarias tales que abq 6= 0.
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(iv) (U ⊂ R4, g+) coa métrica determinada por

g+ = 2ae2x3 dx1 ◦ dx4 + ae2x3 cos(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde U = {(x1, . . . , x4) ∈ R4 / cos(x4) 6= 0}, e a, b, c e q son constantes
arbitrarias tales que ab 6= 0 e b 6= −q, ou

(R4, g−) coa métrica determinada por

g− = 2ae2x3 dx1 ◦ dx4 + ae2x3 cosh(x4)2dx2 ◦ dx2

+ b dx3 ◦ dx3 + 2c dx3 ◦ dx4 + q dx4 ◦ dx4,

onde a, b, c e q son constantes arbitrarias tales que ab 6= 0 e b 6= q.

Máis aínda, tódolos casos (i)–(iv) están na clase conforme dunha métrica Ricci-chá,
a cal é única (salvo homotecias) só no Caso (i). Noutro caso, o espazo das métricas
conformes Ricci-chás é de dimensión dous o tres.

Unha segunda aproximación máis recente para levar a cabo a construción de
métricas de Einstein vén dada polo fluxo de Ricci, é dicir, unha familia 1-paramétrica
de métricas g(t) sobre unha variedade M que satisfai a ecuación ∂

∂tg(t) = −2ρg(t).
O fluxo de Ricci está ben formulado no contexto Riemanniano no sentido de que para
toda variedade pechadaM e toda métrica inicial g(0), existe unha única solución g(t)
para t suficientemente pequeno. Hamilton en [64] mostrou que o fluxo de Ricci con-
verxe a unha métrica de Einstein baixo condicións axeitadas, mostrando así a existen-
cia de métricas de Einstein. Unha observación importante é que, se a métrica inicial
g(0) é Einstein, entón permanece invariante baixo o fluxo (salvo reescalamento ho-
motético). Polo tanto, unha solución do fluxo dise que é auto-similar se permanece in-
variante baixo reescalamentos e difeomorfismos. Tales solucións, usualmente referi-
das como solitóns de Ricci, están caracterizadas pola existencia dun campo de vec-
tores X en M tal que

LXg + ρ = λg, (3)

onde L denota a derivada de Lie e λ é unha constante real. Os solitóns de Ricci son
polo tanto xeneralizacións das métricas de Einstein e súa clasificación é un problema
importante para entender o fluxo de Ricci. Se X é un gradiente, entón a Ecuación (3)
convértese en

Hesf +ρ = λg, (4)

para algunha función potencial f , e (M, g, f) dise un soliton de Ricci gradiente.
A xeometría do tensor de Ricci depende fortemente do signo das curvaturas de

Ricci. Mentres a curvatura de Ricci positiva é unha condición moi forte con con-
secuencias topolóxicas, Lohkamp [80] mostrou que toda variedade admite métri-
cas completas con curvatura de Ricci negativa. Correspondentemente, o estudo dos
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solitóns de Ricci depende do signo da constante λ do solitón; un solitón de Ricci
(M, g,X) dise contractivo, estábel ou expansivo se λ > 0, λ = 0 ou λ < 0, respec-
tivamente.

Mentres que se coñecen certos resultados de clasificación para solitóns de Ricci
gradientes, o caso xenérico (3) é aínda bastante descoñecido. Incluso no caso ho-
moxéneo, non existe aínda unha clasificación completa en dimensión catro. Tendo
en conta que todalas métricas invariantes á esquerda Bach-chás se realizan sobre gru-
pos de Lie resolubles (cf. Theorem 2.1 and Theorem 2.4), tense a seguinte descrición
dos solitóns Bach-chans homoxéneos.

Theorem 2.16. Sexa (M, g) un solitón de Ricci Riemanniano de dimensión catro
homoxéneo, Bach-chan, completo e simplemente conexo. Entón (M, g) é Einstein,
un solitón de Ricci gradiente localmente conformemente chan da forma N3(c)× R,
onde N3(c) é un espazo de curvatura constante, ou homotético a un dos seguintes
solitóns de Ricci alxébricos determinados polas seguintes álxebras de Lie solubles:

(i) A álxebra de Lie gα = Re4 n r3 determinada por

[e4, e1] = e1, [e4, e2] = 1
4e2 + αe3, [e4, e3] = −αe2 + 1

4e3 .

(ii) A álxebra de Lie gα = Re4 n r3 determinada por

[e4, e1] = e1, [e4, e2] = (α+ 1)2 e2, [e4, e3] = α2 e3, α > 1 .

(iii) A álxebra de Lie g = Re4 n h3 determinada por

[e1, e2] = e3, [e4, e1] = 1
4

√
7− 3

√
5 e1,

[e2, e4] = 1
4

√
7 + 3

√
5 e2, [e3, e4] =

√
5

2
√

2
e3 .

A ecuación do solitón de Ricci gradiente (4) codifica a información da variedade
en términos da curvatura de Ricci e da segunda forma fundamental dos conxuntos
de nivel da función potencial f . Como o tensor de Ricci determina completamente
a curvatura no caso localmente conformemente chan, fixéronse moitos esforzos para
obter unha clasificación de solitóns de Ricci gradientes baixo algunhas condicións
do tensor curvatura de Weyl. No caso Riemanniano os solitóns de Ricci gradientes
localmente conformemente chans son localmente produtos warped con base de di-
mensión 1 [55] e tense unha descrición completa para o caso completo contractivo e
estábel [35, 94]. A situación Lorentziana permite outras familias de exemplos cuxa
estrutura subxacente é a dunha onda plana [17].

Foron investigadas suposicións máis débiles sobre o tensor de Weyl conforme.
A propiedade de ser semi-conformemente chá é un exemplo importante. Mentres
os solitóns de Ricci (anti)-auto-duais son localmente conformemente chans no caso
Riemanniano [39], o caso de sinatura neutra permite exemplos non triviais [16] dados
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por extensións de Riemann de solitóns de Ricci gradientes. Xeneralizando a situación
semi-conformemente chá, solitóns de Ricci gradientes Bach-chans foron investigados
en [34]. Os solitóns de Ricci gradientes expansivos completos Bach-chans, así como
os solitóns de Ricci gradientes estábeis con curvatura de Ricci positiva cuxa curvatura
escalar alcanza un máximo nalgún punto interior, son localmente conformemente
chans na categoría Riemanniana.

O noso obxectivo na segunda parte desta monografía é mostrar a existencia de
solitóns de Ricci gradientes Bach-chans estritos no caso de sinatura neutra. Ista pre-
gunta está motivada pola existencia de solitóns de Ricci gradientes auto-duais que
non son localmente conformemente chans [16]. As métricas desexadas constrúense
por unha perturbación das extensións de Riemann clásicas introducidas por Patterson
e Walker [92]. Sexa (Σ, D) unha superficie afín, sexan T e Φ un campo de tensores
paralelo de tipo (1, 1) e un campo de tensores simétrico arbitrario de tipo (0, 2) so-
bre Σ respectivamente. Os datos (Σ, D, T,Φ) determinan unha métrica de signatura
neutra sobre o fibrado cotanxente T ∗Σ dada por

gD,Φ,T = ιT ◦ ιT + gD + π∗Φ, (5)

onde ι denota a aplicación avaliación sobre o fibrado contanxente, π : T ∗Σ→ Σ é a
proxección canónica e gD denota a extensión de Riemann de Patterson-Walker.

No Capítulo 4, mostramos que as métricas (5) provén unha grande familia de
variedades Bach-chás estritas. En efecto,

Theorem 4.1. Sexa (Σ, D, T ) unha superficie afín libre de torsión equipada cun
campo de tensores paralelo T de tipo (1, 1). Sexa Φ un campo de tensores simétrico
arbitrario de tipo (0, 2) sobre Σ. Entón o tensor de Bach de (T ∗Σ, gD,Φ,T ) anúlase
se, e só se, T é un múltiplo da identidade ou é nilpotente.

Se T é un múltiplo da identidade, entón as métricas gD,Φ,T son auto-duais e entón
son de especial interese no caso nilpotente (T 2 = 0, T 6= 0). Ademais, como o campo
de tensores deformación Φ non xoga ningún papel no Teorema 4.1, este pódese usar
para construír unha familia infinita de variedades Bach-chás non isométricas para cal-
quera (D,T ) sobre Σ. Unha elección adecuada de Φ permite a construción de novos
exemplos de solitóns de Ricci gradientes Bach-chans estábeis, onde por notación,
Φ̂(X,Y ) = Φ(TX, TY ) na Ecuación (6).

Theorem 4.6. Sexa (Σ, D, T ) unha superficie afín equipada cun campo de tensores
paralelo nilpotente T de tipo (1, 1) e sexa Φ un campo de tensores simétrico de tipo
(0, 2) sobre Σ. Sexa h ∈ C∞(Σ) unha función diferenciable. Entón (T ∗Σ, gD,Φ,T ,
f = h ◦ π) é un solitón de Ricci gradiente Bach-chan se, e só se, dh(ker(T )) = 0 e

Φ̂ = −HesDh −2ρDs . (6)

Ademais o solitón é estábel e isotrópico.
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Destacamos que a función potencial correspondente ten hipersuperficies de nivel
dexeneradas e a súa estrutura subxacente nunca é localmente conformemente chá, en
contraste coa situación no caso Riemanniano. No Teorema 4.1 as métricas pseudo-
Riemannianas nunca son auto-duais, pero poden ser anti-auto-duais nalgúns casos.
Este feito permite a construción de solitóns de Ricci gradientes anti-auto-duais que
non son localmente conformemente chans, simplemente requírese que ambos T e Φ
sexan paralelos.

Theorem 4.12. Sexa (Σ, D, T,Φ) unha superficie afín con tensor de Ricci simétrico
equipada cun campo de tensores paralelo nilpotente T de tipo (1, 1) e un campo de
tensores paralelo simétrico Φ de tipo (0, 2).

(i) (Σ, D, h) é un solitón de Ricci gradiente afín con dh(ker(T )) = 0 se, e só se,
(T ∗Σ, g

D,Φ̂,T
, f = h ◦ π) é un solitón de Ricci gradiente estábel e anti-auto-

dual que non é localmente conformemente chan.

(ii) (Σ, D, h) é un solitón de Ricci gradiente afín con dh(ker(T )) = 0 se, e só se,
existen coordenadas locais (u1, u2) en Σ tal que o único símbolo de Christoffel
distinto de cero está determinado por uΓ11

2 = P (u1) + u2Q(u1) e a función
potencial h(u1) está determinada por h′′(u1) = −2Q(u1), para todos P,Q ∈
C∞(Σ).

A construción no Capítulo 4 require da existencia de superficies afíns que admitan
un campo de tensores paralelo e nilpotente, o cal é bastante restritivo. Polo tanto, no
Capítulo 5 investigamos a existencia de campos de tensores paralelos de tipo (1, 1)
sobre superficies afíns. Dise que un campo de tensores T é unha estrutura Kähler
(resp. para-Kähler), se T é paralelo e T 2 = − Id (resp. T 2 = Id). Ademais T é
Kähler nilpotente se T 2 = 0 e DT = 0. Como a traza de todo tensor paralelo é
constante, podemos expresar T = 1

2 tr(T ) Id +(T − 1
2 tr(T ) Id) de tal xeito que se

descompoña nun múltiplo escalar da identidade e un campo de tensores sen traza.
Se (Σ, D) é unha superficie afín con tensor de Ricci anti-simétrico ρDsk 6= 0,

entón ρDsk define un elemento de volume. Más aínda, ρDsk dise recorrente, é dicir,
DρDsk = ω ⊗ ρDsk para algunha 1-forma ω. Os campos de tensores paralelos de tipo
(1, 1) sen traza poden reescalarse para ser Kähler, para-Kähler ou Kähler nilpotente
cunha condición de recorrencia:

Theorem 5.1. Sexa (Σ, D) unha superficie afín simplemente conexa con ρDs 6= 0.

(i) (Σ, D) admite unha estrutura Kähler se, e só se, det(ρDs ) > 0 e ρDs é reco-
rrente.

(ii) (Σ, D) admite unha estrutura para-Kähler se, e só se, det(ρDs ) < 0 e ρDs é
recorrente.
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(iii) (Σ, D) admite unha estrutura Kähler nilpotente se, e só se, ρDs é de rango un
e recorrente.

As superficies con tensor de Ricci anti-simétrico (equivalentemente ρDs = 0)
admiten simultaneamente estruturas Kähler, para-Kähler e Kähler nilpotente (ver
Lemma 5.6). Usamos superficies homoxéneas afíns para ilustrar o Teorema 5.1,
mostrando que todas as posibilidades distintas poden realizarse. Os resultados na
Sección 5.3 dan expresións explícitas de estruturas paralelas Kähler nilpotentes so-
bre superficies homoxéneas.

Finalmente, dentro do Capítulo 6 consideramos algunhas xeneralizacións do Teo-
rema 4.1 para a construcións de extensións de Riemann (5) Bach-chás cun campo
de tensores T non paralelo. O Teorema 6.1 estende a construción do Teorema 4.1,
mostrando que a extensión de Riemann (T ∗Σ, gD,Φ,T ) determinada por un campo de
tensores nilpotente T non paralelo segue sendo Bach-chá baixo algunhas condicións
na conexión afín. A pregunta subxacente está baseada en determinar as condicións na
conexión unha vez que se proporciona o endomorfismo nilpotente. Reciprocamente,
poderiamos considerar o problema inverso de construír endomorfismos nilpotentes
en Σ tal que a extensión de Riemann (5) é Bach-chá unha vez que D está determi-
nada. Usamos o Teorema de Cauchy-Kovalevski para mostrar que toda extensión de
Riemann de Patterson-Walker pódese deformar localmente por un campo de endo-
morfismos nilpotente adecuado para ser Bach-chá na categoría real analítica.

Theorem 6.7. Sexa (Σ, D) unha superficie afín real e analítica. Entón existen cam-
pos de tensores nilpotentes T de tipo (1, 1) definidos localmente tales que a extensión
de Riemann modificada (T ∗Σ, gD,Φ,T ) é Bach-chá.

É importante destacar o feito de que os invariantes escalares da curvatura das
extensións de Riemann modificadas (5) son nulos se, e só se, T é nilpotente (Teo-
rema 6.8). Polo cal na Sección 6.3 introducimos algúns invariantes novos que non
son de tipo Weyl. Estes invariantes, que dependen fortemente da curvatura de Ricci
de (Σ, D), permiten distinguir algunhas clases de isometrías de métricas Bach-chás.
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