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Introduction

A central problem in pseudo-Riemannian geometry is the existence of “optimal met-
rics”, meaning those whose curvature has the property of being most evenly dis-
tributed about the manifold. The approach to determine such metrics usually focuses
on finding critical metrics for some natural curvature functionals.

Let M be compact and 7, denote the scalar curvature of a pseudo-Riemannian
metric g on M. The simplest and most natural curvature functional defined on the
space of metrics is the one given by the integral of the scalar curvature: S : g +—
S(g) = [}, 7g dvoly, where dvol is the volume element determined by the metric g.
A metric g is S-critical if its Einstein tensor p, — %Tg g vanishes, where p, denotes the
Ricci tensor of (M, g). Since the curvature functional S is sensitive to scalings of the
metric, one restricts its action to metrics within constant volume. The corresponding
critical metrics are the Einstein ones. Hence one could argue that Einstein metrics,
i.e., those whose Ricci tensor is proportional to the metric, are the most natural opti-
mal metrics on a pseudo-Riemannian manifold.

Einstein metrics are somehow meaningless in dimension two. The Gauss-Bonnet
Theorem shows that S(g) = 4mx[M], where x[M] denotes the Euler characteristic
of M, and thus all metrics are S-critical in dimension two. The three-dimensional
case is very rigid and Einstein metrics are just those of constant sectional curvature.
Hence they are locally isometric to a pseudo-sphere, to a pseudo-Euclidean space or
to a pseudo-hyperbolic space. The first non-trivial situation occurs in dimension four,
where non-trivial examples exist. The classification of four-dimensional Einstein
metrics is a widely open problem and a central question is the existence of such
metrics.

There are several strategies to construct Einstein metrics. A classical one con-
sists on deforming a given metric by a conformal factor so that the metric becomes
Einstein after a suitable conformal rescaling. In this case (M, g) is said to be con-
formally Einstein, i.e., if there is an Einstein representative of the conformal class
[g]. A second more recent strategy makes use of the Ricci flow which under suitable
conditions converges to an Einstein metric. There are however metrics which remain
invariant (up to scaling and diffeomorphisms) by the Ricci flow: the Ricci solitons.

xvii



INTRODUCTION

Brinkmann showed in [14] that an n-dimensional manifold (), g) is conformally
Einstein if and only if the equation

1
(n —2) Hes,, +¢p*ﬁ{(n*2)Aso+w}9=0 (1)

has a positive solution. Even though in dimension 2 the equation is trivial, in higher
dimensions the integration is surprisingly difficult and the equation above is overde-
termined in most cases. Furthermore the conformally Einstein metric, if exists, it is
unique up to homotheties in the Riemannian setting [[14,|106]. An important issue
is, therefore, to characterize conformally Einstein spaces by some more manageable
tensorial equations.

Let (M, g) be conformally Einstein and assume § = ¢%?¢ to be Einstein. Since
Einstein metrics have harmonic Weyl tensor one trivially has div W = 0, where W
denotes the Weyl conformal curvature tensor of (M, g). The fact that the Weyl tensor
rescales under conformal transformations gives that

(diva W)(X,Y, Z) + W(X,Y, Z,Vo) =0

is a necessary condition for (M, g) to be conformally Einstein. A second necessary
condition is obtained as follows. Let W : g — W(g) = [, [|[W|* dvoly be the
curvature functional determined by the L2-norm of the Weyl conformal curvature
tensor. WW-critical metrics where characterized by Bach in [6], showing that a four-
dimensional metric is WW-critical if and only if the Bach tensor B = dive divy W +

1
EW[p] vanishes identically. Clearly any Einstein metric is Bach-flat ({8 = 0). More-

over, a specific feature of dimension four is that JV is conformally invariant and thus
conformally Einstein metrics are Bach-flat in dimension four.
Kozameh, Newman and Tod showed in [72] that the two necessary conditions:

() B=0, (i) divaW)(X,Y,2)+W(X,Y,Z,Vo)=0, ()

are also sufficient to be conformally Einstein if (M, g) is weakly-generic, i.e., the
Weyl tensor viewed as a map T'M — ®3 T M is injective. In the Kihler case the
situation is simpler, since any Bach-flat Riemannian Ké#hler metric is conformally
Einstein [48]. Despite all these results, the classification of conformally Einstein
manifolds is an open question nowadays, with only partial results available. See for
example [[75] for a recent classification of conformally Einstein product manifolds.
Our purpose on Part I of this thesis is to address the classification of four-dimen-
sional conformally Einstein metrics in the homogeneous case. The homogeneity
assumption allows a simplification of the conformally Einstein equation, reducing
Equation [(T)] to a system of algebraic equations by using the conditions in Equa-
tion Four-dimensional homogeneous Einstein metrics were described by Jensen
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INTRODUCTION

[70], who showed that they are symmetric in the Riemannian case. Hence they are
locally a real or complex space form or locally a product of two surfaces of constant
equal Gauss curvature. The conformally Einstein situation is richer and Chapter [2]is
devoted to prove the following classification result.

Theorem Let (M, g) be a four-dimensional complete and simply connected con-
formally Einstein homogeneous Riemannian manifold. Then (M, g) is locally sym-
metric or otherwise it is homothetic to one of the Lie groups determined by the fol-
lowing solvable Lie algebras:

(i) The Lie algebra g, = Rey X t3 given by
les,e1] = €1, [ea,e2] = Tea +aes, [es,e3] = —aes + Tes.
(ii) The Lie algebra g, = Rey x b given by
le1,e2] = €3, [es,e1] = e1—aer, [eq,ea] = aerter, [eq, €3] = 2e3.
(iii) The Lie algebra g, = Rey x t3 given by
[647 61] = €1, [647 62] = (Oé + 1)2 €2, [647 63] = 02 €3, a>1.

Here {e1, ..., e4} is an orthonormal basis. Moreover, the Lie groups (G, (-, -)) in
Assertion (ii) are half conformally flat.

In addition to four-dimensional conformally Einstein metrics, the Hirzebruch sig-
nature formula shows that self-dual and anti-self-dual metrics are also Bach-flat. As
a consequence of the analysis in Chapter[2]we obtain a classification of homogeneous
metrics which are strictly Bach-flat, i.e., those which are neither half conformally flat
nor conformally Einstein, as follows:

Theorem Let (M, g) be a four-dimensional complete and simply connected
strictly Bach-flat homogeneous Riemannian manifold. Then (M, g) is homothetic
to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra g = Rey x ¢(1, 1) given by
e2, €3] = e1, le1,e3] = (24 V/3) ea,
[e4,e1] = V6 + 33en, [e4,e2] = V6 +3V3es.

(ii) The Lie algebra g = Rey x b given by

le1, ea] = es, [ea, 1] = V7= 3V5en,
[€2a€4] - % 7+ 3\/562, [63764] = 27\\//5563 .

Here {e1,...,e4} is an orthonormal basis.

Xix



INTRODUCTION

It is worth emphasizing that the two examples in Theorem [2.4] were previously
constructed by Abbena, Garbiero and Salamon []1].

A crucial step in the proof of Theorem [2.T]and Theorem [2.4]is the description of
four-dimensional homogeneous Riemannian manifolds by Bérard-Bergery [9]: they
are either symmetric or a Lie group with a left-invariant Riemannian metric. An
analogous statement clearly fails in the Lorentzian and neutral signature cases, since
pseudo-Riemannian homogeneous spaces are not necessarily reductive.

Non-reductive four-dimensional homogeneous spaces were classified by Fels and
Renner [54]], and we explicitly use their classification to determine all non-reductive
conformally Einstein metrics in Chapter 3] as follows:

Theorem Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:

(i) (R*, g) with metric given by
g = (4b(x?)% + a) dz' o da’ + 4bx? da' o da?
— (4axx* — 4c2?® + a) dz' o d® + 4ax? dx! o dz*
+ bda? o dx? — 2(azx* — ¢) dx? o da® + 2a dz? o da?,
where a, b and c are arbitrary constants with ab # 0.
(ii) (R%, g) with metric given by
g = (4b(z%)? + a) dx' o dz' + 4bx? dx' o dx?
— (4ax’z* — 4ca® + a) da' o da® + 4ax? dx! o da?
+bdr? o dv?—2(az* — ¢) da? o dad+2adz? o dz* — 32 da® o da?,
where a, b and c are arbitrary constants with ab # 0.
(iii) (R4, g) with metric given by
g= —2ae*" dzt o dad + ae® da? o da?
+ bdx? o dxd 4 2cda® o dz* + g dx? o da?,
where a, b, ¢ and q are arbitrary constants with abq # 0.
(iv) (U C R, g}) with metric given by
g4 = 2ae?*” dat o da* + ae®®” cos(xt)2dx? o da?
+ bda? o da3 4 2cdx® o dz* + g dx? o da?,

where $f = {(z',...,z%) € R*/ cos(xz*) # 0}, and a, b, c and q are arbitrary
constants with ab # 0 and b # —q, or

XX
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(R*, g_) with metric given by
g— = 2ae*’ dzt o dat + ae®®’ cosh(z?)2dx? o da?
+bda? o da® + 2cda® o dat + qdx? o da?,
where a, b, c and q are arbitrary constants with ab # 0 and b # q.

Moreover, all the cases (i)—(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

A second more recent approach to the construction of Einstein metrics is given
by the Ricci flow, i.e., a one-parameter family of metrics ¢g(¢) on a manifold M which
satisfies the equation % g(t) = —2py(s)- The Ricci flow is well-posed in the Riemann-
ian context in the sense that for any closed manifold M/ and any initial metric g(0),
there is a unique solution g(¢) for sufficiently small ¢. Hamilton [64] showed that the
Ricci flow converges to an Einstein metric under suitable conditions thus showing
the existence of Einstein metrics. It is an important observation that, if the initial
metric g(0) is Einstein, then it remains invariant under the flow (up to homothetical
scaling). Furthermore a solution of the flow is said to be self-similar if it remains
invariant up to scalings and diffeomorphisms. Such solutions —usually referred to as
Ricci solitons— are characterized by the existence of a vector field X on M so that

Lxg+p=2Ag, 3)

where £ denotes the Lie derivative and A is a real constant. Ricci solitons are there-
fore generalizations of Einstein metrics and their classification is an important issue
in understanding the Ricci flow. If X is a gradient, then Equation [(3)] becomes

Hesf +p = Ag, 4)

for some potential function f and (M, g, f) is called a gradient Ricci soliton. The
geometry of the Ricci tensor strongly depends on the sign of the Ricci curvatures.
While positive Ricci curvature is a strong condition with topological consequences,
Lohkamp [80] showed that any manifold admits complete metrics with negative Ricci
curvature. Correspondingly, the study of Ricci solitons depends on the sign of the
soliton constant \; a Ricci soliton (M, g, X) is called shrinking, steady or expanding
if A >0, A =0or A\ < 0, respectively.

While there exist several classification results for gradient Ricci solitons, the
generic case [(3)]is still pretty unknown. Even in the homogeneous case a complete
classification is not yet available in dimension four. Since all Bach-flat left-invariant
Riemannian metrics are realized on solvable Lie groups (cf. Theorem [2.T)and Theo-
rem[2.4) one has the following description of homogeneous Bach-flat Ricci solitons.
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INTRODUCTION

Theorem Let (M, g) be a four-dimensional complete and simply connected
Bach-flat Riemannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally
conformally flat gradient Ricci soliton N3(c) x R, where N3(c) is a space form, or
homothetic to one of the algebraic Ricci solitons determined by the following solvable
Lie algebras:

(i) The Lie algebra g, = Rey x 3 given by

lea,e1] = €1, [es,e2] = Teo + aes, [es, €3] = —aes + tes.

(ii) The Lie algebra g, = Rey x t® given by

les,e1] =e1,  [es,ex) = (a+1)*ez, [es,e3] = a®es, a>1.

(iii) The Lie algebra g = Rey x b3 given by
[e1, €2] = e3, leg,e1] = 1V T —3V5e,
[e2,e4] = V7T +3Vbea, ez eq] = T\\//%eg-

The gradient Ricci soliton Equation encodes geometric information of the
manifold in terms of the Ricci curvature and the second fundamental form of the
level sets of the potential function f. Since the Ricci tensor completely determines
the curvature in the locally conformally flat case, substantial progress have been made
towards a classification of gradient Ricci solitons under some assumptions on the
Weyl curvature. Locally conformally flat gradient Ricci solitons are locally warped
products with one-dimensional base in the Riemannian case [55]] and a complete
description is available in the complete shrinking and steady cases [35,94]. The
Lorentzian situation allows another family of examples whose underlying structure
is that of a plane wave [17].

Weaker assumptions on the Weyl conformal tensor have been investigated, half
conformal flatness being an important example. While (anti-)self-dual gradient Ricci
solitons are locally conformally flat in the Riemannian setting [|39]], the neutral signa-
ture case allows non-trivial examples [16] given by Riemannian extensions of affine
gradient Ricci solitons. Generalizing the half conformally flat situation, Bach-flat
gradient Ricci solitons have been investigated in [34]]. Complete Bach-flat shrinking
gradient Ricci solitons, as well as steady gradient Ricci solitons of positive Ricci cur-
vature whose scalar curvature attains a maximum at some interior point, are locally
conformally flat in the Riemannian category.

Our purpose in Part II of this thesis is to show the existence of strictly Bach-flat
gradient Ricci solitons in the neutral signature case. This question is motivated by
the existence of self-dual gradient Ricci solitons which are not locally conformally
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INTRODUCTION

flat [16]. The desired metrics are constructed by a perturbation of the classical Rie-
mannian extensions introduced by Patterson and Walker [92]. Let (X, D) be an affine
surface and let 7" and ® be a parallel (1, 1)-tensor field and an arbitrary symmetric
(0,2)-tensor field on X, respectively. The data (X, D, T, ®) determines a neutral
signature metric on the cotangent bundle 73 given by

gpa,r =T olT +gp + 7", ®)

where ¢ denotes the evaluation map on the cotangent bundle, 7w : T*> — X is the
canonical projection and gp is the Patterson-Walker’s Riemannian extension.

In Chapter 4] we show that the metrics in Equation [(5)] provide a large family of
strictly Bach-flat manifolds. Indeed:

Theorem Let (3, D, T) be a torsion free affine surface equipped with a parallel
(1,1)-tensor field T. Let ® be an arbitrary symmetric (0, 2)-tensor field on . Then
the Bach tensor of (I*%, gp & 1) vanishes if and only if T' is either a multiple of the
identity or nilpotent.

If T' is a multiple of the identity, then the metrics gp ¢ 7 are self-dual and thus
we are specially interested in the nilpotent case (7% = 0, T' # 0). Moreover, since
the deformation tensor field ® does not play any role in Theorem [4.1]it may be used
to construct an infinite family of non-isometric Bach-flat metrics for any given data
(D,T) on X. A suitable choice of ® enables the construction of the desired new
examples of Bach-flat gradient steady Ricci solitons, where as a matter of notation,

~

®(X,Y) =o(TX,TY) in Equation[(6)}

Theorem Let (X, D, T) be an affine surface equipped with a parallel nilpotent
(1,1)-tensor field T and let ® be a symmetric (0, 2)-tensor field on X. Let h € C* (%)
be a smooth function. Then (I3, gp o1, f = h o 7) is a Bach-flat gradient Ricci
soliton if and only if dh(ker(T)) = 0 and

® = —Hes} —2pP . (6)
Moreover the soliton is steady and isotropic.

We emphasize that the corresponding potential function has degenerate level set
hypersurfaces and their underlying structure is never locally conformally flat, in sharp
contrast with the Riemannian situation. The pseudo-Riemannian metrics in Theo-
rem [E] are never self-dual, but they can be anti-self-dual in some cases. This fact
allows the construction of anti-self-dual gradient Ricci solitons which are not locally
conformally flat, just requiring that both 7" and ® are parallel.
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Theorem Let (X, D, T, ®) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1,1)-tensor field T and a parallel symmetric
(0, 2)-tensor field ®.

(i) (X, D, h) is an affine gradient Ricci soliton with dh(ker(T)) = 0 if and only
if (T*%,9p > f = hom) is an anti-self-dual steady gradient Ricci soliton
which is not locally conformally flat.

(ii) (3, D, h) is an affine gradient Ricci soliton with dh(ker(T')) = 0 if and only if
there exist local coordinates (u',u?) on Y. so that the only non-zero Christoffel
symbol is given by “T'11? = P(u')+u?Q(u') and the potential function h(u')
is determined by b (u') = —2Q(u'), for any P,Q € C>®(%).

The constructions in Chapter ] require the existence of affine surfaces admitting
a parallel nilpotent tensor field, which is a rather restrictive condition. We therefore
investigate in Chapterthe existence of parallel (1, 1)-tensor fields on affine surfaces.
One says that a tensor field T is a Kdhler (resp. para-Kdhler) structure if T is parallel
and T? = —Id (resp. T? = Id). T is nilpotent Kéiihler if T?> = 0 and DT = 0. Since
the trace of any parallel tensor is constant, one may express 7' = % tr(T") Id +(T —
% tr(7") Id) so that it decomposes into a scalar multiple of the identity and a trace free
tensor field.

If (3, D) is an affine surface with skew-symmetric Ricci tensor p?k = 0, then pi
defines a volume element. Moreover, pﬁ is said to be recurrent, i.e., DpsDk =w® ,oﬁt
for some one-form w. Parallel trace free (1, 1)-tensor fields can be rescaled to be
either Kéhler, para-Kéhler or nilpotent Kédhler with a recurrent condition as follows:

Theorem Let (X, D) be a simply connected affine surface with p? # 0.

(i) (X, D) admits a Kéhler structure if and only if det(p?) > 0 and p? is recur-
rent.

(ii) (X, D) admits a para-Kihler structure if and only if det(p?) < 0 and p? is
recurrent.

(iii) (X, D) admits a nilpotent Kdhler structure if and only ifpSD is of rank one and
recurrent.

Surfaces with skew-symmetric Ricci tensor (equivalently, p© = 0) admit Kihler,
para-Kéhler and nilpotent Kéhler structures simultaneously (see Lemmal[5.6). We use
homogeneous affine surfaces to illustrate Theorem [5.1] showing that all the different
possibilities are realizable. The results in Section[5.3] give explicit expressions of all
parallel nilpotent Kéhler structures on homogeneous surfaces.
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Finally in Chapter [6] we consider some generalizations of Theorem [.1] to con-
struct Riemannian extensions with non-parallel tensor field 7" which are Bach-flat.
Theorem [6.1] extends the construction in Theorem (.1} showing that the modified
Riemannian extension (773, gp ¢,7) determined by a non-parallel nilpotent tensor
field T remains Bach-flat under some conditions on the affine connection. The un-
derlying question relies on determining the conditions on the connection once the
nilpotent endomorphism is given. Conversely, one may consider the reverse prob-
lem of constructing nilpotent endomorphisms on > such that the modified Riemann-
ian extension [(5)|is Bach-flat once the connection D is given. We use the Cauchy-
Kovalevski Theorem to show that any Patterson-Walker Riemannian extension may
be locally deformed by a suitable nilpotent endomorphism field to be Bach-flat in the
real analytic category.

Theorem Let (X, D) be a real analytic affine surface. Then there exist locally
defined nilpotent (1,1)-tensor fields T such that the modified Riemannian extension
(T*X, gp,o 1) is Bach-flat.

It is a remarkable fact that modified Riemannian extensions [(5) have vanishing
scalar curvature invariants if and only if 7" is nilpotent (cf. Theorem [6.8). Hence
we introduce some new invariants in Section [6.3] which are not of Weyl type. These
invariants, which strongly depend on the Ricci curvature of (X, D), allow one to
distinguish some isometry classes of Bach-flat metrics.

XXV






Chapter 1
Preliminaries

Throughout this chapter we will introduce some concepts and notation that will be
necessary in the development of this thesis. We shall omit most of the proofs and
instead provide references for more details.

1.1 Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold (M, g) is a smooth manifold M of dimension n
equipped with a metric tensor, i.e., with a symmetric and non-degenerate (0, 2)-tensor
field. A non-zero vector v € T,M is called fimelike if g(v,v) < 0, spacelike if
g(v,v) > 0 or null if g(v,v) = 0. We denote by S, (M), S, (M), S)(M) the set of
timelike unit vectors, spacelike unit vectors and null vectors, respectively, at a point
pe M.

Recall that the signature of the metric g is the pair (n — v,v) such that n — v
is the number of negative eigenvalues and v is the number of positive eigenvalues in
the associated matrix. For example, an n-dimensional pseudo-Riemannian manifold
(M, g) is Riemannian if the signature is (0,n) and Lorentzian if the signature is
(1,n — 1). Moreover, if n is even and the signature of g is (5, 5 ) then the manifold
has neutral signature. We denote by 7'M and T M the tangent and the cotangent
fiber bundles of the corresponding manifold. Let X(M) be the space of tangent
vector fields to M. We represent vector fields by X, Y, Z, ... and tangent vectors at
a given point by =, y, z, . ..

For any pseudo-Riemannian manifold (M, g) there exists a unique adapted linear
connection V which is torsion free and parallel, i.e.,

VxY —VyX —[X,Y]=0 and Vg=0.

Such connection is called the Levi-Civita connection. The Koszul formula gives the
following expression of the Levi-Civita connection:

29(VxY,2) = X(9(Y,2)) +Y(9(X, 2)) - Z2(9(X,Y))

_9<X7 [Y7 Z]) —g(Y, [X’ Z]) —l—g(Z, [X7 Y])7
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where XY, Z € X(M) and [+, -] represents the Lie bracket. The connection can be
characterized by means of the Christoffel symbols. Let (z!, ... x™) be local coordi-
nates. We define the Christoffel symbols of the first kind by

1 (Ogy;  Ogei  Ogij
Ty == (294 4 996 _ 993
T (8:5’ * ozl Oxt
and the Christoffel symbols of the second kind by

Li* = g"Tue,
where (g*#) denote the inverse matrix of (gag). Therefore, we obtain
Vaziaxj = Fijkaxk,

o)
Ox?

where we use the notation 0, :=
vector fields.

to represent the locally defined coordinate

1.1.1 Differentiable operators

Let (M, g) be a pseudo-Riemannian manifold and let f: M — R be a differentiable
function. We define the gradient operator V: C*°(M) — X(M) on M as follows:

g(Vf,X)=X(f), forall X € X(M).

In a system of local coordinates (z', ..., 2"), the gradient of the function f is given
by:

Vf= zn: gi’fa—fai.

oxk "
ik=1

The Hessian operator of f is defined by the endomorphism h: X(M) — X(M)
given by the second covariant derivative

hy(X) = VxVf.

Now, we can define a new symmetric tensor field of type (0, 2), the Hessian tensor
Hesy, given by

Hesf(X,Y) = g(hf(X),Y) =g(VxVLY)=XYf - (VxY)f.

In terms of a local coordinate system the Hessian tensor is given by:
*f 1 (9095 Ogy  Ogu Of
dziors 27 \9z!  9xri 019 ) 9k

’f L xOf
Oxt0xI 79k

HeSf (8951 y 8:53' ) =
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We define the divergence of a vector field X by the function div X = tr(VX).
Considering an orthonormal frame {E1, ..., E,} we have

divX = Zsig(VEiX, E;),

where ¢; = ¢g(E;, E;). In general, if T is a tensor field of type (0, s), we define the
divergence on the r-th argument as the (0, s — 1)-tensor field given by

n
(div, T)(X1,.. ., Xeo1) = > _&(VED) (X1, Xeo1, B Xy, X 1),
i=1
forall Xq,...,Xs_1 € X(M). Since r-divergence of T is given by the r-th trace of
VT the definition above does not depend on the choice of the local frame.
1.1.2 The curvature tensor

The Levi-Civita connection having been defined, we introduce the curvature opera-
tor, denoted by R, or curvature tensor of type (1,3) by setting

R(X,Y)Z =Vixy|Z — [Vx,V¥]Z.

In local coordinates (z!,...,z") the components of the curvature tensor are

given by R(0,i,0,i)0 = Ryji*0,e. The curvature tensor of type (0.4) is given
by
R(X,Y,Z,V) =g(R(X,Y)Z,V).

Hence its components are given by R;xe = gor Rijr"
The curvature tensor has the following algebraic symmetries:

a) RX,Y,Z,V)=-R(Y,X,Z,V)=—-R(X,Y,V,Z),
b) R(X,Y,Z,V)+R(Y,Z,X,V)+ R(Z,X,Y,V) =0, (1.1
¢) R(X,)Y,Z,V)=R(Z,V,X,Y),
and the differential identity
d) (VxR)(Y,Z,UV)+(VyR)(Z,X,U,V)+ (VzR)(X,Y,U,V) =0.

Identities b) and d) are known as the first Bianchi identity and the second Bianchi
identity, respectively. A tensor of type (0,4), A: V x V x V x V — R, on a vector
space V' is called an algebraic curvature tensor if it satisfies the identities [(T.1)]
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The sectional curvature of a given Riemannian manifold (M, g) is the real func-
tion x defined on the Grassmannian of 2-planes by
R(X,)Y,X)Y)
K(m) = 79
9(X, X)g(Y,Y) = g(X,Y)

where 7 = ({ X, Y'}) is a two-dimensional subspace of T),M .
In the pseudo-Riemannian setting one must consider the restriction to the Grass-
mannian of non-degenerate planes, i.e., those where

9(X, X)g(Y,Y) - g(X,Y)* #0.
If x(7) is independent of m C T}, M, then the curvature tensor is given by
R(X.Y,Z,V) = kR (X,Y, Z,V),
where R is the standard algebraic curvature tensor given by
RUX,Y,Z,V)=g(X,2)g(Y,V) — g(X,V)g(Y, Z).

If M is connected and dim(M) > 3, then the second Bianchi identity guar-
antees that x is necessarily a global constant if it is pointwise constant. A pseudo-
Riemannian manifold of constant sectional curvature is locally isometric to a pseudo-
sphere S, to a pseudo-Euclidean space E; or to a pseudo-hyperbolic space H, de-
pending on the sign k > 0, kK = 0 or £ < 0 and the signature v (see [88]).

We denote by p the Ricci tensor defined by

p(X,Y) =tr(Z — R(X,2Z)Y)

and the Ricci operator, Ric, which is the associated (1, 1)-tensor field defined by
g(Ric(X),Y) = p(X,Y). The curvature identities show that the Ricci tensor
is symmetric, or equivalently, the Ricci operator is self-adjoint. Moreover the scalar
curvature T is given by

7 = tr(Ric) .

The Ricci tensor and the scalar curvature can be expressed in coordinates by
, .
pij = 9" Rirje, T=9"pij.

Any two-dimensional pseudo-Riemannian manifold satisfies p = 5g. A pseudo-
Riemannian manifold of dimension n > 3 is called an Einstein space if its Ricci
tensor is a constant multiple of the metric, p = Ag. Tracing on the previous expres-
sion one gets

9, (1.2)

-
pP=—
n
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and using the second Bianchi identity we obtain that 7 is constant, for M connected
and dim(M) > 3.

In dimension 3, the Einstein condition is equivalent to constant sectional curva-
ture. In dimension n > 4, there exist Einstein metrics which are not of constant
sectional curvature. For instance S? x S? is Einstein but the sectional curvature is
clearly not constant. Dimension four appears therefore as the first non-trivial case for
consideration.

1.1.3 The Weyl tensor

Let D and B be two symmetric bilinear forms on a vector space V. The Kulkarni-
Nomizu product D ® B is the (0, 4)-tensor on V' defined as follows:

(D ® B)(z,y,z,v) = D(x,z)B(y,v) + D(y,v)B(z,z2)
_D(xv U)B(ya Z) - D(ya Z)B(‘T’ U),

where x,y, z,v € V. An easy calculation shows that D ® B is an algebraic curvature
tensor on (V, (-, -)), i.e., a (0,4)-tensor on V satisfying the algebraic identities
of the curvature tensor. As a basic example, the standard algebraic curvature tensor
RVis givenby RO = 1(-,-) ® (-, ).

The Schouten tensor, S, of an algebraic curvature tensor A on an n-dimensional
inner product vector space (V, (-, -)) is the symmetric tensor field of type (0, 2) de-

fined by
1

Sa= 5 (- ).

where p 4 and 74 are the Ricci tensor and the scalar curvature associated to A.

The Weyl tensor arises from the Kulkarni-Nomizu product of the Schouten tensor
and the metric tensor; Wy = A — &4 ® (-, -). Hence the Weyl tensor, W, of a
pseudo-Riemannian manifold (MM, g) is defined by:

W=R-60y,
or equivalently at each point p € M
W(z,y,z,v) = R(z,y,2,0) + m{g(ﬂx 2)9(y,v) — g(x, v)g(y, 2)}
— i {Pl@. 29 (. v) = ol 0)9(0,2) + ply. V)g(w,2) = Py, g )},

forall z,y,z,v € T,M.
An important property of the Weyl tensor to be used in this work is that it is trace
free. Indeed, one has:
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Lemma 1.1. The Ricci curvature of the Weyl conformal tensor vanishes identically.

Proof. Let {E1, Eo, ..., Ey,} be a pseudo-orthonormal frame, where g(E;, E;) =
gid;; and g; € {£1}. We denote by p(X,Y) = tr(Z — W (X, Z)Y) the Ricci
tensor of the Weyl conformal tensor. Then,

pw = Y &W(X, E;,Y,E)

= X))+ ey {na(X,Y) - g(X, )}
— L {np(X,Y) = p(X,Y) +7g(X,Y) - p(X,Y) }
= p(X,Y)-l—ﬁg(X,Y)—p(X,Y)—ﬁg(X,Y):0.
O]

A pseudo-Riemannian manifold (M, g) is called locally conformally flat if for
each point p € M there exists an open neighborhood ¢/ of p and a smooth function
o: U — R so that the metric § = €27 ¢ is flat.

The vanishing of the Weyl tensor characterizes locally conformally flat spaces in
dimension n > 4. Observe that W = 0 in dimension n = 3. In fact, 3-dimensional
locally conformally flat manifolds are characterized by the total symmetry of the
covariant derivative of the Schouten tensor (Vx&)(Y,Z) = (Vy6)(X, Z) [73].
Explicitly one has:

(VX6)(Y7 Z) - (VYG)(X7 Z)
= w5 {(Vx0(Y.2) = (Vyp)(X. 2)

Z(nl—l) (X(1)g(Y, Z) =Y (1)g9(X, Z))} }

At the level of local differential geometry, the most important invariant of a conformal
structure is given by the conformal Weyl tensor, which satisfies W = e>* W for any
two conformally related metrics § = e%?g.

1.2 Curvature decomposition

Given an n-dimensional real vector space V' with basis {e1, ..., ey}, a bivector of V
is an element of the form

n

E a;j€; N\ e;,

ij=1
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where a;; € R. The set of all elements of this form is called the bivector space A2V,
It has the following properties:

se;Nej=—e;jNe;ande; Ae; =0 Vi, je{l,...,n}.

e Thesete; Aea,...,e1 Aen,eaAes,...,en1 A ey is abasis of A2V,

In consequence, A%V has a vector space structure of dimension % We define
the wedge product of two elements z,y € V, with x = 2'¢; and y = y’¢;, by:

n n
TNy = <Z xiei> A Zyjej = Z(mzyj —2lyYe; Nej € A2V .
i=1 j=1

1<j

Let (-, -) be an inner product on V. Then, it naturally extends to an inner product
(-,-) on A%V as follows (see for example [73]):

(x ANy, zA\t) = (z,2)(y,t) — (z,t)(y, z) . (1.3)

Moreover, if {e1,...,e,} is a (-, -)-orthonormal basis of V, then e; A e; (i < j)isa
(-, -)-orthonormal basis of A2V,

Each algebraic curvature tensor in (V,(-,-)) induces a unique self-adjoint en-
domorphism in (A2V, {-,-)) as follows. Given a curvature tensor A, we define the
endomorphism A: A2V — A2V by

(A(z Ny),z ANw) = A(x,y,z,w) forall z,y,z,weV.

The converse is not true in general since a given self-adjoint endomorphism of A%V
may fail to satisfy the first Bianchi identity. There exists a bijective correspondence
between the set of algebraic curvature tensors A and the set A of self-adjoint endo-
morphisms of A2V satisfying

(AXAY),ZATY+(AY NZ), X ANT)+(A(ZANX),Y ANT) =0.

In particular, the standard curvature tensor R" corresponds to the endomorphism
RO =1d,>.

The following result provides a decomposition of any algebraic curvature tensor.
It is also a motivation for the previously described tensors previously.

Theorem 1.2. [73]] Let A be an algebraic curvature tensor in an n-dimensional
inner product vector space (V, (-, -)). Then it decomposes as:

A=8Us+ 34+ Wy,
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where

= gt O ) 3a= g (A=) 9

and Wy = A — g —34 = A— 840 () is the Weyl tensor associated to the
algebraic curvature tensor A.

The components 414, 34, W4 in Theorem [I.2]correspond to the following:

* i{4 is the orthogonal projection on the space of algebraic curvature tensors of
constant sectional curvature.

* The vanishing of the component 3 4 corresponds with Einstein algebraic cur-
vature tensors.

* In dimension > 4, the vanishing of the component W 4 represents locally con-
formally flat algebraic curvature tensors.

1.3 Self-duality and anti-self-duality

We work at the purely algebraic setting and assume dim(V') = 4. Let {e1,...,es}
be an orthonormal basis of (V (-, -)). Then it follows from Equation[(T.3)| that

(e1 Nea,e1 Aeg) = (e1,e1)(ez, e2

(e1 Nes,ep Nes) = (e1,e1)(e

w
Q
w

(&

w
D
w

( ) — ) )
( )= ) )
(eq,e4) — (e1,ea)(eq, €1) = €164,
( )= ) )
( )= ) )

(e1,€1)
(e1,e1)
(e1 Neg,e1 Neg) = (e, e1)
(ea N es,ea N eg) = (e, e9)
(e2 N eg,ea A eg) = (e, ea)(eq, €4
(es Neyg,e3 Neg) = (e3,e3)(eq,eq) — (e3,e4)(eq,€3) = €364,

where ¢; = (e;,e;). If (-,-) is positive definite then so is (-, -), while if (-,-) has
neutral signature then (-, -) is an inner product of signature (4, 2) on A%V,

Now, let vol := e1 A es A eg3 A e4 be a volume element on V' and define the
Hodge-star operator x: A2V — A2V by a A % = {«a, B) - vol for all a, B € A%V
This operator satisfies the following properties in Riemannian or neutral signature:

(1) *2 = IdA2V7

(ii) « is a self-adjoint operator.
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The case when (V, (-, -)) is of Lorentzian signature is essentially different since in
this setting one has x> = — Id 2y, thus defining a complex structure on A%V and the
induced inner product is of neutral signature (3, 3).

The action of the Hodge-star operator on the basis {e; A e;} is determined by:

*(61 AN 62) = e3e4e3 N\ ey, *(61 VAN 63) = —gg€eqeg Ney, *(61 A 64) = g9e3e2 N es,

where the remaining elements are obtained using that x> = #1Id 2/, depending on
the signature of (V/ (-, -)).

In the Riemannian and neutral signature cases, since > = Id 2y, the eigenspaces
corresponding to the eigenvalues +1 of x decompose A%V as A2V = Ai ® A%,
where

ALV ={a € A’V | xa = a}, AV ={a € A*V | xa = —a}.

The space A%FV is called the space of self-dual 2-forms and A2V is called the
space of anti-self-dual 2-forms. Furthermore, for any algebraic curvature tensor A
on (V, (-, -)) the associated Weyl tensor satisfies xW 4 = W4 and thus the endomor-
phism W decomposes accordingly.

Hence an algebraic curvature tensor A on (V, (-, -)) is said to be self-dual (resp.
anti-self-dual) if WA(A2V) = 0 (resp. WA(AiV) = 0). Further, A is said to be
locally conformally flat if W, = 0. Whenever the orientation is not specified, we
will say that A is half conformally flat if A is either self-dual or anti-self-dual.

The half conformally flat condition can now be stated in terms of the components
of the Weyl tensor in an orthonormal basis as follows.

Lemma 1.3. [21] (V,(:,-), A) is half conformally flat if and only if
WA<617 €i, T, y) = JijkEjEkWA(eja €k, T, y)v

for each x,y € V, where {i,j,k} = {2,3,4}, oy is the signature of the corre-
sponding permutation and {e1, e, e3, e4} is an orthonormal basis of (V, (-, -)).

Since we are interested in pseudo-Riemannian manifolds, we can reformulate the
half conformally flat condition in the previous lemma for a pseudo-orthonormal basis
{t,u,v,w}, i.e., abasis of (V, (-, -)) so that the inner product expresses as

() = (1.4)

O = OO
— o O O
S O o
o O = O

i.e., the only non-zero products are given by (t,v) = (v,t) = (u,w) = (w,u) = 1.
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Lemma 14. [21] (V,(:,-), A) is half conformally flat if and only if
WA(t,’U,l’,y) = WA(u,w,x,y), WA(t7w7$7y) :O> WA(U7U7$7y) :Oa
forall x,y € V, where {t,u,v,w} is a pseudo-orthonormal basis of (V, (-, -)).

Let (M, g) be an oriented four-dimensional pseudo-Riemannian manifold of Rie-
mannian or neutral signature. Then, M is called self-dual (resp. anti-self-dual) if
(T, M, gp, Ry) is self-dual (resp. anti-self-dual) for all p € M. If any of the previous
cases occur then (M, g) is called half conformally flat.

1.4 Conformal transformations and Einstein manifolds

In this section we consider conformal deformations of pseudo-Riemannian metrics
with special attention to their influence on the curvature.

1.4.1 Conformal transformations

A conformal map between two pseudo-Riemannian manifolds (1, g) and (M,g) is
a smooth map F': (M, g) — (M,gq) such that F*g = o~ 2g, for a non-zero smooth
function ¢: M — R, i.e.,

Grp) (F(0) X, Fu(p)Y) = ¢ 2(p)gp(X,Y) forall pe M,

and any X,Y € X(M). Moreover, two pseudo-Riemannian manifolds are conformal
if there is a conformal map between them. Conformallity defines an equivalence
relation in the space of metrics and we denote by [g] the conformal class of a pseudo-
Riemannian metric g.

Weyl showed in [[103] that, although the definition of W evidently depends on the
metric g, the Weyl tensor W actually depends on the conformal class of the metric. If
two metrics § = ¢~ 2g are conformally equivalent, then the Weyl conformal tensors
W and W of type (1,3) are equal to each other. However, the corresponding Weyl
conformal tensors of type (0,4) rescale as W = ¢ 2W. The converse is true if
W = 0 in which case both metrics are locally conformally flat, but not in general.
Hall [63]] showed that in dimension four the following partial converse holds.

Theorem 1.5. [63] Let (M, g) be a four-dimensional Riemannian manifold. Let g
be a Riemannian metric on M so that the Weyl conformal curvature tensors of type
(1,3) satisfy W = W on some open set U C M where W # 0. Then g and G are
conformally related on U.

10



1.4 Conformal transformations and Einstein manifolds

Since we are interested in Einstein metrics one may wonder how the Einstein
condition behaves under conformal transformations. The following lemma follows
after some standard calculations.

Lemma 1.6. [73] Let (M, g) be a pseudo-Riemannian manifold of dimension n and
let p: M — R be a non-zero smooth function. If we consider in M the metric given
by g = ¢~ 2g then one has:

(i) IfV and ¥ denote the Levi-Civita connections of g and g, respectively, then

VxY —VxY = -X(logp)Y —Y(logp)X + g(X,Y)V(logp). (1.5)

(ii) If R and R denote the curvature tensors of type (0,4) of g and g, respectively,
then

R(X,Y)Z — R(X,Y)Z =(VxV(log ¢), Z)Y + (VyV(log ¢), Z) X
— (X, Z)VyV(logp) + (Y, Z)VxV(log ¢)
+ (Ylogp)(Zlogp)X — (X log ) (Zlog )Y
— (V(log ), V(log)) - RO(X,Y)Z
+ (Xlogp)(Y, Z) — (Ylog )(X, Z))Vlog p.

(iii) If p and p denote the Ricci tensors of g and g, respectively, then

p—p=¢((n—2) pHes, +(pAp — (n = 1)[[Ve|?)g),
where Ay = try(Hes,,) is the Laplacian.

Assertion (iii) in Lemma|[I.6|shows that the Einstein condition is not necessarily
preserved by a conformal transformation. The following result was originally proven
by Brinkmann [15] (see also [[74]).

Theorem 1.7. Let (M, g) be an Einstein manifold of dim(M) = n > 3. A conformal
A
metric § = ¢~ 2g is Einstein if and only if Hes, = —(pg.
n
It follows from the work of Brinkmann that a Riemannian four-dimensional Ein-
stein metric admits a conformally related Einstein deformation if and only if it is of
constant sectional curvature. On the other hand, the indefinite setting allows the ex-
istence of conformally-related Einstein metrics which are of non-constant sectional
curvature. Examples of this situation will appear in Chapter 3]

11
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1.4.2 Conformally Einstein manifolds

Einstein metrics are among the most privileged ones, since they are considered op-
timal metrics, i.e., those whose curvature has the property of being most evenly dis-
tributed on the manifold. For that reason, Einstein metrics are central in geometry.
One strategy to construct an Einstein metric consists in deforming an initial metric
by a conformal factor so that the resulting metric becomes Einstein. We make this
more precise as follows.

Definition 1.8. A pseudo-Riemannian manifold (M, g) is called locally conformally
Einstein if for any point p € M there exists a neighborhood U of p € M and a
smooth function ¢: U — R so that § = ¢~ 2g is a locally defined Einstein metric.

An application of Lemma|[I.6}(iii) gives the following:

Theorem 1.9. [14] A pseudo-Riemannian manifold (M, g) is conformally Einstein
if and only if the following equation has a positive solution

1
(n —2)Hesy +pp = —((n = 2)Ap + ¢1)g, (1.6)

where n = dim(M).

Equation [(T.6)| will be called the conformally Einstein equation. Observe that the
conformally Einstein equation is generically overdetermined. Moreover solutions (if
exist) are unique as shown by Brinkmann and Yau in the Riemannian setting.

Theorem 1.10. [15,/106] Let M and N be two connected Riemannian Einstein
manifolds of dimension > 3 and let F': M — N be a conformal diffeomorphism.
Then either F is a homothety or both M and N have constant curvature.

It is relevant to emphasize that uniqueness of Einstein metrics in the conformal
class is not true in higher signatures. In Chapter [3] we will show the existence of
non-reductive homogeneous conformally Einstein pseudo-Riemannian manifolds (of
neutral or Lorentzian signature) where the space of conformally Einstein metrics has
dimension 2 or 3.

Equation is trivial in dimension two, but its integration is surprisingly dif-
ficult in higher dimensions. Three-dimensional manifolds are locally conformally
Einstein if and only if they are locally conformally flat. Hence this dimension is ex-
ceptional and there is a tensorial characterization of the conformally Einstein prop-
erty. However, in dimension > 4, there are examples which are conformally Einstein
but not locally conformally flat. The conformally Einstein equation implies that the
eigenspaces of the Hessian operator h, must coincide with the eigenspaces of the
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Ricci operator. Moreover, the eigenvalues of h,, are determined by the eigenvalues
of Ric and conversely.

In what follows of this section, we will show some consequences of the con-
formally Einstein Equation aimed to obtain a tensorial characterization of the
conformally Einstein property. The following is an important observation.

Lemma 1.11. Letr (M, g) be a pseudo-Riemannian manifold. Then

(div W)(X, Y. 2) = (n = 3){ (Vx®)(Y, 2) - (Vy&)(X. 2) },

where G = ﬁ (p — m g) is the Schouten tensor. In particular divW = 0 if
(M, g) is Einstein.

Proof. Fix a point p € M and specialize a local orthonormal frame {E1, ..., E,}
so that Vg, E; |p: 0. Further let X, Y, Z be vector fields on M and assume that
Vi X |p =VEgY |, =VEgZ |, =0. Then the divergence of the Weyl tensor is
given by:

(divIV)(X,Y,2) = > &(VEW)(X,Y,Z,E;).

1

Recall that the expression of the Weyl tensor W = R — G © g is given by

Now, we compute the covariant derivative of each term in Equation First of all
we apply the second Bianchi identity to compute

Zi 61E,LR(X, Y, Z, Ez) = — Zz 6ZXR(K Ei, Z, El) — Zz €ZYR(E“ X, Z, Ez)
= Yp(X,Z) - Xp(Y.2).

Since the standard algebraic curvature tensor R is parallel, the derivative of the
second term in Equation becomes

ey i il (TRY(X,Y, Z, Ey))

:mﬁKWWXKZEMEm

= e {9 DY (7) - gV, 2)X(n)}.

13
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Proceeding in an analogous way with the derivative of the third term in Equation|[(1.7)|
one has

55 eEi(p© 9)(X,Y, Z, E;)
= k5 Yiei 9V, E)Eip(X. 2) — g(Y. 2)Eup( X, Ey)
+9(X, Z)Eip(Y, Ei) — g(X, E)Eip(Y, Z) }
= Y (X, Z) — g(¥, Z) div p(X) + g(X, Z) div p(Y) — Xp(Y. Z)}

= m{QYp(K Z) —g(Y, Z)X () + g(X, Z)Y () — 2X p(Y, Z)} .

Now, adding all the expressions above one gets:
(divWW)(X,Y, Z)
=YX, 2) - Xp(Y, 2) + s {9(X. 2)Y (1) = g(V, 2)X (1) }

~ s {2 (X, 2) — (V. Z)X(7) + 9(X, )Y (v) — 2Xp(Y. 2) |

= =3V p(X, 2) = Xp(Y, Z) = spg5 (9(X, 2)Y (7) = 9(¥, 2)X (7)) |

= (n=3){(Vx&)(v,2) - (Vy&)(X,2)}.

3

Finally observe that if (M, g) is Einstein, then p = Tg with 7 € R, and thus the

Schouten tensor & =

— (p — 2(nT—1)g> is parallel. Hence divWW =0. [

Let g and g be conformally related so that § = ¢ ~2g and, for sake of simplicity,

set o = —log ¢. Let W and div4 W denote the Weyl tensor and its divergence with
respect to the metric g. Then one has:

Lemma 1.12. Let G = €27 g be two conformally related metrics. Then
(divy W)(X,Y, Z) = (diva W)(X,Y, Z) + (n — 3)W(X,Y, Z, Vo) (1.8)
for all vector fields X,Y, Z on M.

Proof. Let {E1, Es,...,E,} be a local g-orthonormal frame and set E; = E%El
so that {E1, Ea, ..., Ey,} is a local g-orthonormal frame, where g(E;, E;) = £;0;;.

14
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Then

(div, W)(X.Y, 2)

= Z 61(VE1W)(X7 Y7 Za Ez)

1 (— .
— Zsi@{inW(X, Y,Z,E) - W(Vg,X,Y,Z,E;) —W(X,Vg,Y, Z,E;)

~W(X,Y, V2 E) - W(X.,Y, Z, Vg, Ei)} .

Next, we expand separately each one of the five terms above to obtain:

Ve W(X,Y,Z,E) = Ej(e*W(X,Y,Z,E;))
= 22 E(0)W(X,Y,Z,E;) + eV, W(X,Y, Z,E;),

W(VeX,Y, Z,E))
=W (Vg X + Ei(0)X + X(0)E; — g(E;, X)Vo,Y, Z, E;)
= eza{w(inX, Y, Z,E;) + W(E;(0)X,Y, Z, E;) + W(X(0)E:, Y, Z, E;)
— g(E;, X\)W(Vo,Y, Z, Ei)}
= 7 {W(V5X.Y. 2. B) + W(X,Y. Z,g(Vo, E))E,)

+ X(0O)W(E,Y, Z, E;) — W(Vo.,Y, Z, g(E;, X)Ei)},

W(X,VgY,Z E;)
= e W(X,VgY + Ej(0)Y +Y(0)E; — g(E;,Y)Vo,Z, E;)
= 2 {W(X, V.Y, 2, B) + W(X, E0)Y, Z,E:) + W(X,Y (0)B:, Z, Ey)
— g(E;, Y)W (X, Vo, Z, Ei)}
- er{W(X, VY, Z,E)+W(X,Y, Z, g(Vo,E)E;)

+Y (o)W (X, E;, Z, E;) — W(X, Vo, Z, g(E:, Y)Ei)},

15
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= 2W(X,Y, Vi Z + Ei(0)Z + Z(0)E; — g(E;, Z)V o, E;)

_ eQU{W(X, Y,V Z, E) +W(X,Y,E(0)Z, E;) + W(X,Y, Z(c)E;, E;)
— g(E;, Z)W(X,Y, Vo, Ei)}

- eQU{W(X7 Y,V Z, E) +W(X,Y, Z, (Vo, E)E;)
+ Z(U)W(Xv Y) Eia EZ) - W(X7 Y7 va7g<Ei7 Z)El)}a

= e W(X,Y,Z, Vg, Ei + Ei(0)E; + Ei(0)E; — g(E;, E;)Vo)

_ 620{W(X, Y, Z,V,E) + 2W(X,Y, Z, E;(0)E;)
— g(B;, E)W(X,Y, Z, va)} .

Hence,
(@2 ) (X, Y, 2)

= 52»@2”{VE1.W(X, Y, Z,E;) - W(Vg,X,Y, 2, E;) — W(X,Vg,Y, Z,E;)

i

—W(X,Y, V2, E) - W(X,Y, 2,V E) }

+(n—3)W(X,Y, Z,Vo)
+W(\No,Y,Z,X)+W(X,Vo,Z,Y)+ W(X,Y,Vo, Z)
= (divy W)(X,Y,Z) + (n—3)W(X,Y, Z,Vo),
which finishes the proof.

O]

An immediate consequence of Lemma and Lemma is that, if § = p2g

is Einstein, then

(diva W)(X,Y, Z) — (n — 3)W(X,Y, Z,Vo) =0 (1.9)

for all vector fields X, Y, Z on M where ¢ = e~ 7 [[74}[79]]. Observe that the tensorial
condition involves Vo, which makes in a certain way unmanageable since the

conformal deformation o is unknown.

Remark 1.13. The identity in Equation is satisfied for any divergence, i.e.,

(divs W)(X,Y, Z) — (n — 3)W(X,Y, Vo, X) = 0.
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1.4 Conformal transformations and Einstein manifolds

Next we compute the divergence in Equation As a matter of notation,
let W [®] denote the action of the Weyl conformal curvature tensor on the space of
symmetric (0, 2)-tensor fields by (see [10])

2%

Lemmal|L.1|shows that, for any function f € C* (M), one has W |f g] = 0 since W
is trace free and Wg] = pw = 0.

Now, fix a point p € M and let {E1, Es,..., E,} be a local g-orthonormal
frame around p € M such that Vg, E;|, = 0 for any ¢,j and let X, Y, and Z
be vector fields such thatVg, X|, = VgY|, = Vg, Z|, = 0 for all i. We set
T(X,Y,Z) =W(X.,Y, Z,Vo) and compute divy T" in Equation[(1.9)|to get:

0 =divedivy W(X,Y) + (n —3)dive T(X,Y). (1.10)
Furthermore

dive T(X,Y)
= ZZ(VElT)(X, Ei7 Y) = Z VELW(Xa Eia K VU)

=3 Vi (Vo EYW(X, B Y, By) = Y { (Ve Vo B)W(X, B, Y Ey) |

1,J 4,J
= Hes,(E;, E))W(X,E;,Y,E;) + Y (Vo, E;) Y Ve, W(X,E;,Y, E))
1,7 J A

= WHes,] + Y (Vo, E;) div, W(X,Y, Ej).

J

Now, by Remark[I.13]one gets

divo T(X,Y)
= WHes,] — (n—3) Y (Vo,E;)W(X,Vo,Y, E))
= W(Hes,] — (n—3) Y (Vo, Ei)(Vo, Ej)W (X, E,,Y, E;)
= W[Hes,| — (n — 3)W|[do ® do],

and thus

divy divy W(X,Y) 4+ (n — 3)W([Hes,] — (n — 3)*W[do @ do] =0.  (1.11)
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Since ¢ = €77, one has dp = —e~?do and Hes, = ™7 (— Hes, +do ® do).
Hence (n — 2) Hes, +¢p = (n — 2)e™? (— Hes, +do ® do) + e~ p, and the con-
formally Einstein Equation [(T.6)|becomes

1
Hesy = ——p+do®@do —e” - £ - g,
n—2

where £ = m{(n — 2)Ayp + 7}. Finally, substituting in Equation [(1.1T)] and
using Lemma(I.1] one gets

0=divedivy W(X,Y)+(n —3)W {ﬁp—i—da ® da—e"gg] — (n—3)?W|do ® do]

— divy dive W + 2=3W[p] + (n — 3){W[da ® do] — (n — 3)Wldo ® da]}

n—2
= divodiva W + 2=3W([p] — (n — 3)(n — 4)W|do ® do] .
In the special case of dim(M) = 4, one obtains the necessary conditions (i) and

(ii) in Theorem [I.14]to be conformally Einstein. Moreover, these conditions are also
sufficient in some special cases as the following shows.

Theorem 1.14. [72] Let (M, g) be a four-dimensional manifold such that the con-
formal metric G = p~2g is Einstein. Then

(i) divadivy W + W ([p] =0,
(ii) (divy W)(X,Y,Z) —W(X,Y,Z,Vo) =0,
where o = — log o, for some function € C*(M).
Conversely, conditions (i) and (ii) above are also sufficient if (M, g) is assumed
to be weakly-generic, i.e., the Weyl curvature operator (viewed as amap W : TM —

Q> TM) is injective.

Observe that condition (i) in Theorem is a tensorial equation on (M, g)
which is independent of the conformal factor.
1.5 Additional structures on manifolds

In this section we briefly review some basic notation on Kihler and para-Kéhler struc-
tures that will appear in subsequent chapters.

18
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Kaihler structures

A complex manifold is a differentiable manifold with a holomorphic atlas. If a real
manifold M of dimension n = 2m admits a globally defined tensor field J of type
(1,1) such that

J?=—1d, (1.12)

then (M, J) is called an almost complex manifold and J is an almost complex struc-
ture on M. As the word indicates, almost complex means that it is “not quite”
complex. If the almost complex structure corresponds to the underlying structure
of a complex manifold, then it is said to be integrable and a fundamental result of
Newlander and Nirenberg [85]] shows that an almost complex structure J on M is
integrable if and only if the Nijenhuis tensor [V vanishes, where

Ny(X,Y)=[JX,JY] - J[JX,Y] - JIX,JY] + J*[X,Y].

A pseudo-Riemannian metric g on M is called an almost Hermitian metric if the
almost complex structure J is an isometry in each tangent space, i.e.,

g(JX,JY)=g(X,Y) forall XY € X(M). (1.13)

The triple (M, g, J) is called almost Hermitian manifold. An almost Hermitian man-
ifold (M, g, J) is said to be Hermitian if the almost complex structure is integrable.

Associated to any almost Hermitian structure (g, J) there exists a non-degenerate
2-form, called the Kdhler form and given by:

QX,Y) = g(JX,Y).

The covariant derivative of the almost complex structure, the Nijenhuis tensor and
the differential of the Kihler 2-form €2 are related by (see [105]).

29((VxJ)Y,Z) +3dUX,Y, Z) — 3dQUX,JY,JZ) — g(JX,N;(Y,Z)) =0.

A symplectic manifold (M, Q) is a manifold equipped with a closed and non-
degenerate two form (i.e., d©2 = 0 and Q™ = ) AN Q #0). If (M,g,J) is
an almost Hermitian manifold with closed Kéahler form, then M is said to be almost
Kdihler. If M is a complex manifold with an Hermitian metric and €2 is closed then M
is called a Kdhler manifold with Kédhler metric g. In other words, Kéhler manifolds
are characterized by the parallelizability of their complex structure, V.J = 0, and
their curvature tensor satisfies

R(X,Y,Z,W)=R(JX,JY,Z,W).
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A consequence of the previous identity is that any Kihler manifold of constant sec-
tional curvature is necessarily flat. We define the holomorphic sectional curvature
as the restriction of the sectional curvature to non-degenerate holomorphic planes m
(i.e., non-degenerate planes invariant by the complex structure; J(7) C 7) and it is
given by
R(X,JX, X,JX)

9(X, X)?

It is important to emphasize that the holomorphic sectional curvature determines
the curvature tensor in the Kihler case. Moreover, a Kihler manifold has constant
holomorphic sectional curvature c if and only if the curvature tensor is given by

H(m) =

R=<(R°+R),
where R is the standard algebraic curvature tensor and
RUX,Y)Z =g(JX,2)JY —g(JY,Z)JX +29(JX,Y)JZ.

A Kihler manifold of constant holomorphic sectional curvature is locally isometric
to the complex space C])" (if ¢ = 0), to the complex projective space CP}" (if ¢ > 0)
or to the complex hyperbolic space CH" (if ¢ < 0) [8].

An almost Hermitian manifold (M, g, J) is said to be locally conformally Kiihler
(resp. locally conformally symplectic) if there is a local conformal deformation g =
€27 g so that (M, g, J) becomes Kihler (resp. symplectic). One has the following
characterizations (see [52,|101]] and references therein).

* (M,g,J)is locally conformally Kdihler if and only if .J is integrable and d2 =
0 A, df =0, where @ is a closed 1-form.

* (M,g,J) s locally conformally symplectic if and only if dQ2 = O A2, df = 0,
where 6 is a closed 1-form.

Let (M,g,J) be a four-dimensional Kahler manifold and orient it so that the
Kihler 2-form is self-dual (2 € Ai). Then the self-dual Weyl curvature operator
satisfies

Wt = % diag[2, —1, —1].

Hence the self-dual part of the Weyl tensor of any locally conformally Kéhler metric
has two-equal eigenvalues. The following converse, proven by Derdzinski, is impor-
tant for our purposes in Chapter 2]

Theorem 1.15. [48]] Let (M, g) be an oriented four-dimensional Riemannian Ein-

stein manifold such that W™ has at most two different eigenvalues at each point.
1

Then g = (24||W™||?)3 g is Kéihler on the open set where W+ # 0.
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Para-Kahler structures

A (1,1)-tensor field J on a 2m-dimensional manifold M is said to be an almost pro-
duct structure if 3 = Id. In this case the pair (M, J) is called an almost product
manifold. An almost para-complex manifold is an almost product manifold such that
the bundles 7" M and T~ M associated with the two eigenvalues 41 of J have the
same rank.

An almost para-Hermitian manifold (M, g,J) is a manifold M endowed with
an almost para-complex structure J and a metric tensor ¢ such that g(JX,JY) =
—g(X,Y). We define the non-degenerate 2-form of the almost para-Hermitian man-
ifold by

Q(X,Y) =9(X,Y),

for any vector fields X, Y on M.

Let Q be a 2-form on M. (2 is called an almost symplectic form if it is non-
degenerate, i.e., Q" # 0 and the pair (M, <) is said to be an almost symplectic
manifold. Let L. C M be an m-dimensional submanifold of an almost symplectic
manifold. If Q| = 0 then L is a Lagrangian submanifold. An almost symplectic
manifold is an almost para-Hermitian manifold if its tangent bundle decomposes as
a Whitney sum of Lagrangian subbundles. Observe that T'M = L; ¢ Ly and the
(1,1)-tensor field defined by J = 71, — 71, (Where 71, and 71, are the projections
of "M on L and Lo, respectively) determines an almost para-complex structure on
M. Furthermore the metric tensor is determined by the para-complex structure and
the 2-form Q as g(X,Y) = Q(JX,Y).

A para-Kdhler manifold is a symplectic manifold which is diffeomorphic to a
product of Lagrangian submanifolds. One has the following relationship between €2,
the integrability of JJ and the covariant derivative of J:

29((VxJ)Y, Z2) + 3dQX, Y, Z) + 3dQUX, JY,32) + 93X, N3(Y, Z)) = O,

where N3(X,Y) = [3X,3Y] — J[IX,Y] — J[X,JY] + J?[X, Y] is the Nijenhuis
tensor of the almost para-complex structure. This relationship allows to characterize
para-Kihler manifolds through the parallelism of J. Hence one has that (M, g, J) is
a para-Kdhler manifold if and only if

P =1d, ¢g(3X,3Y)=—g(X,Y) and VJI=0.

We refer to [44l/46]] for more details and references. In this case, the curvature tensor
satisfies
R(X,Y,Z,W)=—-RIX,JY, Z,W).

We define the para-holomorphic sectional curvature by the restriction of the
sectional curvature to non-degenerate para-holomorphic planes, i.e., non-degenerate
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planes 7 such that J(7) C 7:

R(X,JX,X,3X)
9(X, X)?

H(m)=—

As in the Kihler case, the para-holomorphic sectional curvature determines the cur-
vature of a para-Kéhler manifold and it is constant if and only if

R= —E(RO + R,
where R is the standard algebraic curvature tensor and
RI(X,Y)Z = 93X, 2)3Y — g(3Y, 2)3X + 203X, Y)3Z.

A para-Kihler manifold of constant para-holomorphic sectional curvature is locally
isometric (or anti-isometric) to R?™ if ¢ = 0 or to the para-complex projective space
P™(B) if ¢ # 0 [S8]. Further, observe that the para-complex projective space is
locally isometric to the cotangent bundle of a flat affine manifold equipped with a
suitable Riemannian extension [29]].

1.6 The Bach tensor

The Bach tensor arises as the gradient of the quadratic curvature functional given by
the L2-norm of the Weyl curvature tensor. The purpose of this section is to intro-
duce the Bach tensor in dimension four and give some examples of Bach-flat metrics
(we refer to [|6] for more details). We have already encountered the Bach tensor in
Theorem |1.141(1).

Definition 1.16. Let (M, g) be a four-dimensional pseudo-Riemannian manifold.
The Bach tensor is the symmetric (0, 2)-tensor field defined by

B = divodivy W + %W[p] .

The Bach tensor in dimension four is symmetric, trace free, divergence free and
conformally invariant [95,96]. Clearly locally conformally flat metrics are Bach-flat.
Moreover, a straightforward calculation shows that the Bach tensor of any Einstein
metric vanishes identically and Theorem [I.14-(i) shows that conformally Einstein
metrics are Bach-flat as well.

It is important to emphasize that Bach flatness is a necessary but not sufficient
condition for a manifold to be conformally Einstein. For instance the left-invariant
Bach-flat metrics constructed by Abbena, Garbiero and Salamon in [1] fail to satisfy
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Equation [(1.9)] and thus they are not locally conformally Einstein. However, Bach
flatness is also a sufficient condition to conformally Einstein in some special cases as
shown by Derdziniski [48] (see also [[77]]).

Theorem 1.17. Let (M, g, J) be a four-dimensional positive definite Kdihler mani-
fold. Then it is conformally Einstein if and only the Bach tensor vanishes.

An additional motivation for studying the Bach tensor with a different geomet-
rical flavor is as follows. Let W be the quadratic curvature functional given by the
L?-norm of the conformal Weyl tensor

W g s W(g) = /M W, |2 dvol, (1.14)

It quantifies the deflection of a Riemannian metric g from being locally conformally
flat. A remarkable property is that VV is conformally invariant in dimension four.
Indeed, if § = €??¢ and n = 4, then

W11 dvoly = WijkgWijke dvolg
= P Wijpee® e STW I dyol, = ||W||? dvol, .

The Euler-Lagrange equations for JV-critical metrics were obtained by Bach (6], who
showed that a metric is W-critical if and only if 28 = 0.

Remark 1.18. In addition to conformally Einstein manifolds, half conformally flat
metrics are also Bach-flat. Let M be an oriented four-dimensional manifold. Recall
from the Hirzebruch signature formula that (see [48]] and [3])

1
1272

\]

M] /M<|W+||2 WPy, (1.15)

where 7[M] denotes the Hirzebruch signature of M. Hence
Wig)= [ IWIEdvol, = [ (WP 4 W) doo,
M M
~ 41272 [M] 4+ 2/ W2 duol,,
M

which shows that half conformally flat metrics are extremal for the functional W, and
thus Bach-flat.
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1.7 Affine geometry

An dffine manifold is a pair (M, D) of a manifold M and an affine torsion free
connection D. The Ricci tensor p” is defined by setting p”(X,Y) = tr(Z —
RP (X, Z)Y). Since the Ricci tensor need not be symmetric in general, we introduce
the symmetrization p2 and the skew-symmetrization pﬁ by setting:

pP(XY) = 5{pP(X,Y) + p" (Y, X)},

D 1y,D D (1.16)

An affine manifold (M, D) is flat if the associated curvature tensor R vanishes.
In this case, there exists local coordinates where the Christoffel symbols are zero.
Two connections D and D are said to be projectively equivalent if there is a 1-form w
such that DxY = DxY + w(X)Y + w(Y)X for all vector fields X,Y on M. One
says that (M, D) is projectively flat if the connection D is projectively equivalent
to a flat affine connection. Two-dimensional projectively flat affine structures are
characterized as follows

Theorem 1.19. [87] Let (M, D) be an affine surface. Then (M, D) is projectively
flat if and only if pP, DpP are totally symmetric.

An affine manifold is curvature recurrent (resp. Ricci recurrent) if DRP =
w® RP (resp. DpP” = w ® pP) for some 1-form w, and (M, D) is said to be
locally symmetric if DRP = 0. Since the curvature tensor of any affine surface is
determined by the Ricci tensor as RP(X,Y)Z = pP(X,2)Y — pP(Y,Z)X, one
has that curvature recurrent and Ricci recurrent conditions are equivalent in the two-
dimensional case.

Curvature recurrent surfaces appear in a natural way in the study of affine connec-
tions with skew-symmetric Ricci tensor since any affine surface with skew-symmetric
Ricci tensor is curvature recurrent around any point where the curvature is non-zero.
We refer to Wong [[104] for a classification of curvature recurrent surfaces. The fol-
lowing results will be used in this memory:

(i) Let (3, D) be a curvature recurrent affine surface with symmetric Ricci tensor
of rank one. Then there exist local coordinates (!, 2%) where the unique non-
zero component of D is given by

Dp 0y = a(xt, 12)0,2

for some smooth function a(x!, z2) [[104].
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(ii) Let (X, D) be a curvature recurrent affine surface with non-degenerate sym-
metric Ricci tensor. Then, there is a pseudo-Riemannian metric g on M such
that D is the Levi-Civita connection of g [[104].

(iii) Let (3, D) be a curvature recurrent affine surface with skew-symmetric Ricci
tensor. Then there exist local coordinates (x!, z?) where the unique non-zero
components of D are given by

Dy, 0p1 = —0,10(z", %) 0,1, Dp 02 = 0,20(x", 2°)0,2,

for some smooth function f(z!, x2) [49,[104].

1.7.1 Riemannian extensions

The existence of a parallel distribution on a Riemannian manifold (M, g), i.e., a
distribution U such that VU C ‘U, leads to a local de Rham decomposition. This
local decomposition extends to the pseudo-Riemannian setting whenever the parallel
distribution ‘U is non-degenerate. We say that a pseudo-Riemannian manifold is a
Walker manifold if it admits a parallel and degenerate distribution . Walker showed
in [[102] the existence of local coordinates where the metric takes a simple form as
follows (see [[19] for more information on Walker manifolds).

Theorem 1.20. [102]] Let M be an n-dimensional Walker manifold and let 0 be
an r-dimensional parallel and degenerate distribution. Then, there exist adapted

coordinates on M, (x',... a7 x" =" . 2™, such that the metric is given by
B H 1d,
Id. 0 0

where 1d,. is the identity matrix of order r and A, B, H are matrices whose coeffi-
cients are functions of the coordinates verifying:

(i) A and B are symmetric matrices of order (n — 2r) X (n — 2r) and r x r,
respectively. H is a matrix of order v x (n — 2r) matrix and H' denotes its
transposed.

(ii) A and H do not depend on the coordinates (x™~ "1 ... ™).

Moreover, the null parallel distribution ‘U is locally generated by the coordinate vec-
tor fields {Opn—r+1,...,0n }.
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The canonical form in the previous theorem simplifies if the parallel distribution
has full dimension and the manifold has even dimension n = 2m. In this case, there
exist Walker coordinates (z',..., 2™, xy/, ..., 2,,) such that the metric is given by

the matrix (see [19]):
(9i5) Id,, 0 )’ (1.17)

where B is an m X m symmetric matrix whose entries are functions of the coordinates
(x',...,2™ 21/, ..., 2,). When the metric is in the form the Christoffel
symbols and the curvature operator are given as follows:

Lemma 1.21. [29]] Let (M, g,0) be a Walker manifold of dimension n = 2m, where
dim(*0) = m. Then, the non-zero Christoffel symbols are given by

L% = =36, 9ij, Tyt = 302, 9k,
i = —3(0ux9ij + OpiGik + OniGjt + >y GsOz,, 9is)»
where the sum is taken forall s =1,...,m.

For any Walker manifold the curvature tensor satisfies the following conditions
(see [50D):

R(m7mj_a'a'> =0, R(mvma'f) =0, R(mLamLama') =0.
Moreover, the non-zero components of the curvature tensor are as follows.

Lemma 1.22. [29] Let (M, g,0) be a Walker manifold of dimension n = 2m, where
dim(0) = m. Then, the non-zero components of the curvature tensor of type (1,3)
are given by (up to symmetries):

R;-‘ik = —2(0430s,, 9k — 003 0s,, 9it) — (0w, 9ik0s,, 9js — Oz, 9jkOz,, Gis),
Rl = —5(005 0 gi — D3i Opn gie + 0410y ik — 01O gjn)
- i{axs/gik(azhgjs — Ozsgjh — Opigsh — 9ntOz, Jjs)
— O, 9k (0pn Gis — OxsGin — OyiGsh — GntOr, Gis)
— 0z, 9in(Oxs gik — Ok Gis — OyiGks — IstOz, Gik)
+ Oz, Gin(Ozs gk — OpkGjs — OniGrs — 9stOz, Jjk)

+20,; (ghsaxszgik) — 20, (ghsarsxgjk)}a
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1.7 Affine geometry

h 1
Rjz"k = _§ami/8xh/gjka

Rl = =3(9:00s, 95k — 010z, 951)
%(amslgjkazi/gsh + arsxgjhaxi/gsk - 285(/‘1-/ (ghsaxs/gjk))a
Rjzk” = _%(8$-7axk/glh a’ﬁa$k/g]h) (al’k/gzsax /9ih — a:ck/gjsazszgih),

’

h _ 1
Rji/k»/ - §8mi/a:vk/gjh7

wherel < s < m.

The study of the geometry in dimension four is central in this thesis. In this case,
we take coordinates (2!, 22, x1/, £5/) such that the metric takes the form:

<

Il
S =0 2
_ o o0
SO O =
O O = O

where a, b and c are functions in the coordinates (z!, 22, 21/, xo/).

A special class of Walker metrics is given by the Riemannian extensions and
their modifications. A feature of these metrics is that they provide a link between
affine and pseudo-Riemannian geometry. Hence one may use pseudo-Riemannian
techniques to investigate affine problems and vice versa.

The Riemannian extensions are a family of distinguished metrics on the cotangent
bundle of an affine manifold. Let 7™ M be the cotangent bundle of an m-dimensional
manifold M and let 7: T*M — M be the projection. Let p = (p,w) denote a point
of T*M, where p € M and w € T,y M. Local coordinates (x',...,2™) in an open
set U of M induce local coordinates (z',..., 2™, 2y, ..., o) in 771 (U), where

one sets for any 1-form
w= Z rydzt .

For each vector field X on M, the evaluation of X is the real valued function
1X: T*M — R given by 1 X (p,w) = w(X,). Setting X = X0, one has

x , Ty ) E xl/X

Vector fields on T* M are characterized by their action on evaluations ¢ X and one
defines the complete lift to T* M of a vector field X on M by X¢(.Z) = ([ X, Z] for
all vector fields Z € X(M). Moreover, (0, s)-tensor fields on 7 M are characterized
by their action on complete lifts of vector fields on M. Hence, for any (1, 1)-tensor
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field 7" on M, its evaluation is the 1-form (7" on T*M characterized by (T'(X¢) =
(T X). In induced local coordinates one has the expression T = x3, T*; dx'.

Considering a torsion free connection D on M, the cotangent bundle 7™ M can be
equipped with a pseudo-Riemannian metric gp of signature (m, m), which is called
the Riemannian extension of D [92], characterized by

gp(XY°) = —(DxY + Dy X),

where X¢, Y¢ denote the complete lifts to 7*M of vector fields X, Y on M. In

induced local coordinates (xl, ceey @™y, Lo Ty ) on T* M, the Riemannian ex-
tension has the expression

gp = 2da’ o dwy — 223, PTy*da’ o da? (1.18)
where © Fijk are the Christoffel symbols of D with respect to (x!,...,2™) on M

and “o” denotes the symmetric product w; o wy := %(wl ® w2 + w2 @ wy). In matrix

form:
—2$k/DFZ'jk Idm
gp = .
1d,, 0

Riemannian extensions are a particular class of Walker metrics with parallel degen-
erate distribution %0 = ker(7«) = span{0dz ,,...,0¢ ,}.

Modified Riemannian extensions

A generalization of Riemannian extensions can be constructed as follows. Consider
(M, D) an n-dimensional affine manifold where D is a torsion free connection on
M. Let @ be a symmetric (0, 2)-tensor field on M. Then the deformed Riemannian
extension, gp.& = gp + 7P, is a first perturbation of the Riemannian extension and
is characterized by

gD7q>(Xc, Yc) = —L(DXy + DyX) + (I)(X,Y) oT,

where X ¢ and Y¢ denote the complete lifts to T M of vector fields X,Y on M. In
local coordinates one has

dD,» = del ] dxi’ — {ka/DPUk — (Dzj}dl’z o dxj .

A second perturbation is as follows. Let T = T*; do’ ® 0, and S = S¥; d2’ ®
0, be (1, 1)-tensor fields on M. The evaluations 7" and ¢S define 1-forms on 7M.
The modified Riemannian extension, gp & 1,5 is the neutral signature metric on 7 M
defined by (see [29])

9D,®,T,S = LTOLS—!-gD—I—T['*(I), (1.19)
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1.7 Affine geometry

where ® is a symmetric (0, 2)-tensor field on M. In local coordinates one has

gpors = 2dx’odry
—I—{%Qj‘r/l‘s/(TriSsj + TTjSSZ-) — Ql‘k/DFijk + @ij}dxi odx .

Modified Riemannian extensions are characterized among Walker metrics by their
curvature as follows (see [2]]):

(i) A Walker manifold satisfies R(J, )0 = 0 if and only if it is locally a deformed
Riemannian extension.

(ii) A Walker manifold satisfies (Vg R)(J, )0 = 0 if and only if it is locally a
modified Riemannian extension. Hence, locally symmetric Walker metrics are
modified Riemannian extensions.

The case when 7 is a multiple of the identity (I" = ¢Id, ¢ # 0) and S = Id
is of special interest. It was shown in [29] that for any affine manifold (M, D), the
modified Riemannian extension gp 14,14 is an Einstein metric on 7 M if and only
if the deformation tensor @ is the symmetric part of the Ricci tensor of (M, D).

Theorem 1.23. The modified Riemannian extension gp & .1d1d on the cotangent
bundle T*M of an m-dimensional affine manifold (M, D) is Einstein if and only
if®= C(m;“_l)pf, with ¢ # 0.

Proof. Let gp #.c1d,1a = ctId ot Id +gp + 7*® be a modified Riemannian extension
and let 7 be its scalar curvature. The trace free Ricci tensor is given by pg = p —
5-9D,®,c,1d and determined by

1
po =27 pY — §C(m - 7o,

from where the result follows. O]

A slight generalization of the modified Riemannian extension allowed a complete
description of self-dual Walker metrics as follows.

Theorem 1.24. [2951|] A four-dimensional Walker metric is self-dual if and only if
it is locally isometric to the cotangent bundle T*Y. of an affine surface (X, D), with
metric tensor

g=1X(IdotId) + ¢ IdotT 4 gp + 7* P,

where X, T, D and ® are a vector field, a (1, 1)-tensor field, a torsion free affine
connection and a symmetric (0, 2)-tensor field on %, respectively.
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1.8 The Ricci flow: Ricci solitons

The Ricci flow was introduced by Hamilton in [64] aimed to solve the Poincaré con-
jecture: any three-dimensional closed and simply connected manifold is homeomor-
phic to S3. The Ricci flow is defined by the evolution equation

0
ag(t) = —20q(1); (1.20)

where ¢(t) is a 1-parameter family of Riemannian metrics on M. For any C*° metric
go on a closed manifold M, there is a unique solution g(t), t € [0,¢), to the Ricci
flow equation for some £ > 0, with g(0) = go. The idea of the Ricci flow is to
deform the original metric ¢(0) into a distinguished one by its Ricci curvature (see
for example [42]). For example, if M is two-dimensional, the Ricci flow deforms a
metric conformally to one of constant curvature and thus gives a proof of the two-
dimensional uniformization theorem [38]].

The first example of solution to the Ricci flow equation is given by Einstein met-
rics, where the solution is

te(—o00,55) if A>0,

g(t) = (1 —2Xt)go, where te(g,00) if A<O,
te (—o0,00) if A=0,

for an Einstein initial metric g(0) such that p,y = Ag(0). Moreover, in any of the
cases ¢(0) remains invariant modulo homotheties.

Generalizing the behaviour of Einstein metrics, and allowing the initial metric
to change not only by homotheties but also by diffeomorphisms, a solution g(¢) of
the Ricci flow is said to be self-similar if there exists a positive function o (t) and a
one-parameter group of diffeomorphisms ¢ (t) : M — M such that

g(t) = a(t)p(t)"9(0). (1.21)

Remark 1.25. If Equation defines a solution of the Ricci flow, then differen-
tiating [(1.21)] yields

= 2p(9(t) = o' () (t)"g0 + o ()2 (t)"(Lx g0), (1.22)

where g9 = ¢(0), X is the time-dependent vector field such that X (¢ (t)(p)) =
2((t)(p)) forany p € M, and o’ = 2.
Since p(g(t)) = ¥ (t)*p(go), one can drop the pull-backs in Equation [(1.22)| and
get:
—2p(g0) = o' (t)g0 + Lz )90, (1.23)
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1.8 The Ricci flow: Ricci solitons

where X (t) = o(t)X(t). Put A = —26(0) and Xy = %)N((O), so that Equa-
tion becomes

—2p(g0) = 2 go+2Lx,90 at t=0.

This shows that for any self-similar solution of the Ricci flow there exists a vector
field on M satisfying

Lxg+p=2Ag.
Conversely, let X be a complete vector field on a pseudo-Riemannian manifold

(M, g) and denote by ¢ (t) : M — M with ¢(0) = Id); the family of diffeomor-
phisms generated by X according to

1
DY

L)) X))

which is defined for all ¢ < % if A > 0Oandforallt > % if A < 0. Considering now
the one-parameter family of metrics

g(t) = (1 =2X)¥(t)"g,

one has

2g(t) = —2xy(t)'g+ (1 —2\)0(t)* (ﬁl_lwxg)
= )" (=229 + Lx @ p)9) -
Now, if Lxg + p = Ag, then

%g(t) = Y(t)*(=2p) = =2¢()"p = =2 p(Y(t)"g) = —2p(g(1)),

which shows that g(t) is a solution of the Ricci flow.
The above motivates the following definition.

Definition 1.26. A triple (M, g, X)) where (M, g) is a pseudo-Riemannian manifold
and X is a vector field on M satisfying

Lxg+p=2Ag (1.24)

is called a Ricci soliton. A Ricci soliton is said to be shrinking, steady or expanding
if A >0, A =0or\ <0, respectively.
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A Ricci soliton whose vector field can be written as the gradient of some function
f: M — Ris called a gradient Ricci soliton. In this case, we may compute L x gy =
2 Hesg, (f) and we have

Hesg, (f) + p(g0) = Ago (125)

We call the function f the potential function. If the potential function is constant,
then the gradient Ricci soliton is trivial since Equation [(T.25)|reduces to the Einstein
equation. In consequence, gradient Ricci solitons are natural extensions of Einstein
manifolds.

Gradient Ricci solitons codify geometric information of the manifold in terms of
the Ricci curvature and the second fundamental form of the level sets of the potential
function f. Moreover, they appear as singularities of the Ricci flow [41]], so it is
important to understand the geometry and topology of gradient Ricci solitons and
their classification.

As a result of several works, the classification of complete locally conformally
flat gradient shrinking Ricci solitons has been finally achieved [83/[94]]. Since the
Ricci tensor determines the curvature tensor in the locally conformally flat case, it
follows that a locally conformally flat gradient Ricci soliton, not necessarily com-
plete, is locally a warped product in the Riemannian case [55]]. Four-dimensional half
conformally flat (i.e., self-dual or anti-self-dual) gradient Ricci solitons have been in-
vestigated in the Riemannian and neutral signature cases [16,(39]. While they are
locally conformally flat in the Riemannian situation, neutral signature allows other
examples given by Riemannian extensions of affine gradient Ricci solitons.

On the other hand, since Bach-flat metrics contain half conformally flat and con-
formally Einstein metrics as special cases, a natural problem is to classify Bach-flat
gradient Ricci solitons. The Riemannian case was investigated in the shrinking and
steady cases in [34,36[]. In all situations the Bach-flat condition reduces to the locally
conformally flat one under some natural assumptions. In Chapter ] we construct new
examples of Bach-flat gradient Ricci solitons in the neutral signature case where the
corresponding potential functions have degenerate level set hypersurfaces and their
underlying structure is never locally conformally flat, in sharp contrast with the Rie-
mannian situation. These metrics are realized as modified Riemannian extensions on
the cotangent bundle 7Y of an affine surface (3, D).

Self-dual gradient Ricci solitons

Let (M, g, f) be a gradient Ricci soliton. The level set hypersurfaces of the potential
function play a distinguished role in analyzing the geometry of gradient Ricci soli-
tons. Hence we say that the soliton is non-isotropic if V f is a nowhere null vector
(i.e., |V f||* # 0), and that the soliton is isotropic if |V f||?> = 0, but V f # 0.

32
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Non-isotropic gradient Ricci solitons lead to local warped product decomposi-
tions in the locally conformally flat and half conformally flat cases, and their ge-
ometry resembles the Riemannian situation [[16,(17]]. The isotropic case is, however,
in sharp contrast with the positive definite setting since V f gives rise to a Walker
structure. Self-dual gradient Ricci solitons which are not locally conformally flat are
isotropic and steady. Moreover, they are described in terms of Riemannian extensions
as follows.

Theorem 1.27. [16] Let (M, g, f) be a four-dimensional self-dual gradient Ricci
soliton of neutral signature which is not locally conformally flat. Then (M, g) is
locally isometric to the cotangent bundle T*Y. of an affine surface (¥, D) equipped
with a deformed Riemannian extension gp.¢ = gp + 7" ®.

Moreover any such gradient Ricci soliton is steady and the potential function is
given by f = h o7 for some h € C*(X) satisfying the affine gradient Ricci soliton
equation

Hes? +2pP =0, (1.26)

for any symmetric (0, 2)-tensor field ® on X.

An affine surface (X, D) is an affine gradient Ricci soliton if there is a function
h € C*>(X) satisfying Equation [(1.26)|

The previous result relates affine geometry of (X, D) and pseudo-Riemannian ge-
ometry of (T*%, gp &), allowing the construction of an infinite family of steady gra-
dient Ricci solitons on 7% for any initial data (2, D, h) satisfying Equation [(1.26)
It is important to remark here that the existence of affine gradient Ricci solitons im-
poses some restrictions on (X, D), as shown in [18] in the locally homogeneous case.
Moreover, note that Equation does not depend on the deformation tensor ®.
In consequence any affine gradient Ricci soliton gives rise to an infinite family of
self-dual gradient Ricci solitons just varying the deformation tensor .

1.9 Homogeneous spaces

Homogeneity is central in differential geometry. In pseudo-Riemannian geometry,
roughly speaking, homogeneity means that for any two points there exists an isometry
sending one point to another. Thus geometry is the same at each point. In affine
geometry, the notion of homogeneity means that for any two points there exists an
affine transformation sending one point into the other. It is important to emphasize
that a pseudo-Riemannian manifold may be affine homogeneous for the Levi-Civita
connection but not homogeneous. In this section, we treat homogeneity from the
point of view of pseudo-Riemannian and affine geometry.
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Riemannian homogeneous spaces

A connected Riemannian manifold (M, g) is said to be homogeneous if the group of
isometries acts transitively on M. This means that if p,q € M are any two points
then there exists an isometry ¢ of (M, g) such that ¢(p) = ¢. Note that, in this case,
the connected component of the identity of the isometry group acts transitively on M
as well. This definition of homogeneity is equivalent to the existence of a connected
Lie group G and a smooth map

GxM — M

(:p) = ap=Lg(p)
such that for all g1, g2 € G it satisfies:

(i) Ly, is an isometry of (M, g).
(i) Lg, Lg, = Lgyq,-
(iii) For py1,po € M there exists an element ¢; € G such that Ly, (p1) = pa.

Now, we suppose that G' acts effectively on M, i.e., L, is the identity transfor-
mation of M if and only if ¢ is the identity element e € . Note that we can always
replace G by the quotient group G /K, where K is the kernel of the map ¢ — L, of
G in the isometry group. Thus, if G is a connected Lie group which acts on (M, g)
as a transitive and effective group of isometries, then G can be identified with a Lie
subgroup of the isometry group.

Let p € M and let H = {q € G| qp = p} be the isotropy subgroup of p. Then
M is diffeomorphic to the quotient G/ H and we have the canonical projection

T G— G/H.

It is a principal fiber bundle over M with structure group H. The subgroup H is
closed but not necessarily connected. A Riemannian metric g on G/H is called G-
invariant if the action t,: G/H — G/H with ty(sH) = qsH is an isometry, for all
g € G. Inthis case (G/H, g) is called a homogeneous Riemannian space. One says
that (M, g) is locally homogeneous if for each p, g € M, there exist neighborhoods
U of p and V of ¢, and a local isometry ¢: U — V such that ¢(p) = q.

Simply connected homogeneous Riemannian manifolds of dimension 2 are sym-
metric. Three-dimensional complete and simply connected homogeneous Riemann-
ian manifolds are either symmetric spaces or Lie groups with a left-invariant Rie-
mannian metric [97]] (see [81]] for a modern exposition and [23|] for an extension to
the three-dimensional Lorentzian setting). The same result holds true in the four-di-
mensional case, as shown by Bérard-Bergery:
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Theorem 1.28. [9] Let (M, g) be a four-dimensional complete and simply connected
Riemannian homogeneous manifold. Then either (M, g) is symmetric or it is isomet-
ric to a Lie group with a left-invariant metric.

P

In particular, either M is one of the groups SL(2,R) x R, SU(2) x R or it is
a solvable Lie group. Four-dimensional solvable Lie algebras are obtained as ex-
tensions of the three-dimensional unimodular Lie algebras: the abelian Lie algebra
3, the Heisenberg algebra h?, the Poincaré algebra ¢(1,1) of the group of rigid mo-
tions of the Minkowski 2-space and the Euclidean algebra ¢(2) of the group of rigid
motions of the Euclidean 2-space. Moreover, the solvable and simply connected
four-dimensional Lie groups are the following:

(i) The non-trivial semi-direct products R x F(2) and R x E(1,1).
(ii) The semi-direct products R x R3.

(iii) The non-nilpotent semi-direct products R x H?3, where H? is the Heisenberg
group.

Let (M, g) be a connected n-dimensional Riemannian manifold. Further let M =
G/H, where G is a group of isometries of M acting transitively and effectively on
M. We denote by H the isotropy group at a point p € M. Let g denote the Lie
algebra of GG and b the Lie algebra of H.

Definition 1.29. M = G/ H is called reductive if there exists a vector subspace m of
g such that

g=hdm, (1.27)
where m is the Ad(H )-invariant subspace on g, i.e., Ad(H)m C m (see [71,100]).

Note that when H is connected Ad(H)m C m is equivalent to [h, m] C m, and
that H is always connected if M is simply connected. Moreover, if H is compact, the
decomposition always exists since we can take m = b= with respect to an Ad(H)-
invariant inner product on g.

If G/H is a homogeneous reductive space which admits a pseudo-Riemannian
metric with G acting by isometries, then the curvature tensor R takes a simpler form,
which facilitates the study of the geometry of these spaces. It is important to empha-
size that reductivity is not an intrinsic property of (M, g) but of the description of
M as a coset space GG/ H. For example, in neutral or Lorentzian signature reductive
decompositions may not exist. Fels and Renner [54] classified four-dimensional non-
reductive homogeneous spaces, and their work will be essential in the development
of Chapter 3]

35



Preliminaries

Half conformally flat homogeneous manifolds

De Smedt and Salamon [47]] classified half conformally flat left-invariant Riemannian
metrics on Lie groups, showing the following.

Theorem 1.30. [47] A four-dimensional homogeneous manifold is strictly anti-self-
dual if and only if it is a complex space form or a simply connected Lie group G,
corresponding to the solvable Lie algebra g, given by

[e1, €2] = €2 — aves, [e1,e3] = avez + €3, [e1, eq] = 2ey, [en,e3] = —eq, (1.28)
where {e1, ..., e4} is an orthonormal basis.

Note that the choice of orientation has no role at all in Theorem so that one
may replace anti-self-duality by self-duality.

Homogeneous affine surfaces

We say that an affine surface (X, D) is locally homogeneous if given any two points
p and g of X, there exists a local diffeomorphism W intertwining p and ¢ such that
WU*D = D. The following result was proved by Opozda [90] (see [22] for a different
proof). It is fundamental in the subject.

Theorem 1.31. [90] Let (3, D) be a locally homogeneous affine surface which is
not flat. Then at least one of the following three possibilities holds which describe
the local geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols P I’ijk are
constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form
DFijk _ (xl)—lcijk’
for C’Z-jk constant and z* > 0.
(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Surfaces of Type .A and Type B have different geometric properties. For example,
the Ricci tensor of any Type A surface is symmetric and this may fail for a Type B
surface. Indeed, the Ricci tensor of a Type B surface may even be skew-symmetric;
this is closely related to the existence of non-flat affine Osserman structures [60].
The geometry of Type 5 surfaces is not so rigid as that of the Type A surfaces. On
the other hand, any Type A surface is projectively flat and again this may fail for a
Type B surface.

36



1.9 Homogeneous spaces

Remark 1.32. The different types .4, B and C are not exclusive (see [18]]).
(i) There are no non-flat surfaces which are both of Type .4 and Type C.

(ii) The only non-flat surfaces which are of both Type 53 and Type C are the hyper-
bolic plane and the Lorentzian analogue realized as the half plane models with
metrics ds? = (w})2{(dx1)2 + (dz?)?} and ds? = (m%)g {(dz1)? — (d=?)?},
respectively.

(iii) A Type B affine surface is also of Type A if and only if it is flat or the Christof-
fel symbols satisfy PT'jo! = PTyp! = PTge? = 0.
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Chapter 2
Conformally Einstein homogeneous
Riemannian manifolds

The existence of conformally Einstein metrics amounts to understand a rather com-
plicated PDE as Brinkmann showed in [[14]]. Homogeneity allows a reduction of the
problem to a system of algebraic equations and our purpose in this chapter is to pro-
vide a complete description of homogeneous conformally Einstein metrics in dimen-
sion four. Previous work of Jensen [70] showed that four-dimensional homogeneous
Einstein metrics are symmetric and thus locally a product of two surfaces of con-
stant sectional curvature or a real or a complex space form. Our main result provides
a classification of conformally Einstein and Bach-flat homogeneous four-manifolds.
In this chapter we report on work investigated in [23]].

Theorem 2.1. Let (M, g) be a four-dimensional complete and simply connected con-
formally Einstein homogeneous Riemannian manifold. Then (M, g) is locally sym-
metric or otherwise it is homothetic to one of the Lie groups determined by the fol-
lowing solvable Lie algebras:

(i) The Lie algebra g, = Rey x 3 given by

lea,e1] = €1, [eq,e2] = %62 +aes, leq,e3] = —aes + %6’3-

(ii) The Lie algebra g, = Rey x §3 given by

le1,e2] = e3, [eq,e1] = e1—aea, [eq,e2] = aeiter, [es,e3] = 2e3.

(iii) The Lie algebra g, = Rey x t3 given by

leg,e1] = e1, [es,ed] = (a+1)%e2, [es,e3) =a?es, a>1.

Here {e1,...,eq} is an orthonormal basis. Moreover, the Lie groups (Gq, (-, -)) in
Assertion (ii) are half conformally flat.

Remark 2.2. Following the notation in [4], the underlying Lie algebras in Theo-

remareti11 Ny ifoz;réOOrt4;;ifoz:()inAssertion(i),Di1 Vifa#0ord, 1
ia 101 o 2

'y 4

if @ = 0 in Assertion (ii) and ty (44 1)2 o2 in Assertion (iii).
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Remark 2.3. Recall that if two Riemannian metrics are conformally equivalent,
g = €2g, then their Weyl tensors of type (1,3) coincide and thus W = e* W
for the Weyl tensors of type (0,4). The converse does not hold in general, but it is
true in dimension four on any open set where W # 0 (see [63]])). Furthermore, if
the conformal manifolds (1, g) and (M, g) are both homogeneous, then [W]? and
||VV||2 are constant and, since ||I/V||2 = e 47| ||?, either g and g are homothetic or
otherwise both metrics are locally conformally flat. We will make extensively use of
these facts to obtain the different homothety classes in Theorem

Theorem 2.4. Let (M, g) be a four-dimensional complete and simply connected
strictly Bach-flat homogeneous Riemannian manifold. Then (M, g) is homothetic
to one of the Lie groups determined by the following solvable Lie algebras:

(i) The Lie algebra g = Rey x ¢(1,1) given by
[e2, €3] = ex, [e1, e8] = (2+ V/3) ea,

leq,e1] = V6 + 33 e, [e4,e2] = V6 +3V3es.

(ii) The Lie algebra g = Rey x h? given by

le1, ea] = e3, lea, e1] = i 7—3V5e,
[e2,e4] = 3V T+ 3V5eq, le3, e4] = 2—\\//%@3.
Here {e1, ..., e4} is an orthonormal basis.

Remark 2.5. The underlying Lie algebras in Theorem are aff(R) x aff(R) in
Case (i) and 04, with p = %0(5 — 3\/5) in Case (ii), following again the notation
in [4].

The chapter is organized as follows. In Section [2.1) we give the coordinate ex-
pressions of the metrics as well as the underlying structure of conformally Einstein
and strictly Bach-flat manifolds. In Section [2.2] locally symmetric Bach-flat four-
manifolds are shown to be either Einstein or locally conformally flat (cf. Lemma[2.8).
Hence the analysis of the Bach-flat condition is considered separately for the different
four-dimensional Lie groups through Sections The components of the Bach
tensor give polynomials in the corresponding structure constants. Therefore, deter-
mining the Bach-flat Lie groups equals to solve some rather complicated polynomial
systems. We make use of Grobner bases theory previously introduced in Section[2.3]
The proofs of Theorems 2.1 and [2.4] are completed in Section[2.8]and in Section[2.9]
Finally in Section [2.10] as an application of the previous results, we determine the
four-dimensional homogeneous Bach-flat Ricci solitons.
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2.1 Coordinate expressions

As a matter of notation, for a given orthonormal basis {ey,...,es4} on a Lie algebra
g, we denote by {Ezi} the corresponding orthonormal basis of self-dual and anti-
self-dual two-forms in A% (g) given by:

Ef: = %(elAeQieij’/\ezl),
Eét = \}5(61/\e3¢62/\e4),
Egt = \}5(61/\64ﬂ:€2/\63),

where {e'} is the dual basis of {e;}.

Conformally Einstein homogeneous metrics in Theorem (i)

The structure equations of g, corresponding to Theorem [2.1}-(i):

lea,e1] = €1, [es,e2] = 16 + aes, [es,e3] = —aex + 16

are given in the dual basis {e*} by

de* =0, de' = el N el
2.1
d€2:%62/\€4—a63/\64, de3:o¢e2/\e4—|—%e3/\e4.

Integrating the expressions above gives coordinates (x, ¥, z,t) on R* where

et =eldz, €= e_it(dy —azdt), €= e_it(dz + aydt), et =dt,

so that the metric expresses as
Go = € 2tda® + e_%t(dy — azdt)? + e_%t(dz + aydt)? + dt? . (2.2)

Now, a straightforward calculation shows that the conformal metric g, = e%tga is
Ricci-flat.

Observe that W+ = % diag[1, 1, —2]. Therefore, the self-dual and anti-self-dual
Weyl curvature operators have a distinguished eigenvalue with one-dimensional cor-
responding eigenspace, which define an almost Hermitian structure and an opposite
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one. The structure Equations [(2.1)] show that the underlying almost complex struc-
tures (JEe; = ey, JEes = tes) are integrable and moreover the corresponding
Kihler forms satisfy dQ4 = 6 A Qi with § = —1et. Hence (Gq, (-, -), J%)
is conformally Kihler and opposite-Kihler since both J* are integrable. Alterna-
tively, results in [48]] show that since g, is Einstein and W+ =Ww- , the confor-
mal metric g& = (24| W2 3 Jo 1s Kidhler with respect to both orlentations, where
W2 = 2e73 in the coordinates (z,y, z,t) of Equation[[2:2)] Finally, observe
that the Kihler metric g¢ is locally a product N x R?, where N is a warped product.

Conformally Einstein homogeneous metrics in Theorem (ii)

A direct calculation shows that the Weyl tensor of (G,, (-, -)) corresponding to
Theorem (ii) satisfies W+ = 0 and W~ = diag[—2,1,1]. Hence, the distin-
guished eigenvalue of W™ with corresponding one-dimensional eigenspace defines
a two-form E; on G,. The structure equations

de* =0, de! =e' Net + ae? Ned,
(2.3)
de? = —ae' Net +e? Net, ded =2e3 net — el Ae?,
show that the underlying almost complex structure (J e; = e, J e3 = —ey) is

integrable and moreover dE; = 0 A Ey with = e*. Hence (Ga, (-, -),J7)
is conformally opposite-Kéhler, since J~ induces an opposite orientation on G,,.
Alternatively, results in [48]] show that, since g, is Einstein, the conformal met-
ric g, = (24HW_ ||2)é§a is Kéhler with respect to the opposite orientation, where
||I/IN/||2 = 6e~ 1'% in the coordinates (z,, 2, t) where the metric expresses as:

Jo = e 2 (dz + aydt)? + e 2 (dy — axdt)?

2.4)
+ e M(dz + L(ady — ydz) — La(a? + y?)dt)? + di*.

Let V be a vector space equipped with an inner product (-,-) and let A be an
algebraic curvature tensor on V. Fix z € V. The associated Jacobi operator is
defined by the linear map

Ja(z): V=V, Ja(z)(x) = (A(z,)z)x = A(z,2)z.

It is possible to restrict the domain of this operator to z- by the curvature identi-
ties[(T.1)] Observe that this operator is self-adjoint. Indeed:

(Ta(2)(2),y) = (A(z,7)z,y) = A(z, 7, 2,y) = (A(2,9)2,2) = (2, Ta(2)(v)) -
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2.1 Coordinate expressions

Let z € V be a unit vector and let J4(z) be the associated Jacobi operator. If
{x1,...,2,_1} is an orthonormal basis for z*, then

n—1 n—1
tI’(jA(Z)) = Z €i<t7A(Z)xi> xl) = Z 5i<A(zv ZL‘i)Z, xl> = IOA(Z7 Z) .
i=1 =1

If z € 2! is a unit non-zero vector, then m = ({z, z}) is a non-degenerate plane of
V, i.e., the restriction of (-,-) to 7 is non-degenerate. In consequence, the sectional
curvature of 7 is given by:
(A(z, %)z, x) <L7A(Z)x7x>
ka(m) = = :

<:L',l'><z,z> - <.%',Z>2 <.%',:L'><Z,Z>
In particular, if we restrict to the definite positive case, the eigenvalues of the Jacobi
operator J4(z) represent the extremal values of the sectional curvature of all planes
containing z.

Let A be an algebraic curvature tensor in a vector space equipped with an inner
product (V, (-, -)) of signature (v,n — v). We say that (V, (-, -), A) is spacelike
Osserman (resp. timelike Osserman) if the (possibly complex) eigenvalues of the
associated Jacobi operator [J4 are constant in the spacelike pseudo-sphere ST (V)
(resp. in the timelike pseudo-sphere S~ (V')). Assuming v > 0 and n — v > 0, both
conditions are equivalent [59] and we will say that (V, (-, -), A) is Osserman.

In a purely geometric context, we must differentiate between pointwise Osserman
and global Osserman conditions. A pseudo-Riemannian manifold (M, g) is called
pointwise Osserman if the eigenvalues of the Jacobi operators 7 (z) = R(x,-)x do
not depend on the unit vector x € S;E (M) but they can change from point to point. If
the eigenvalues of the Jacobi operators do not vary from point to point then (M, g) is
called globally Osserman. Observe that any isotropic pseudo-Riemannian manifold
is globally Osserman. Therefore, real, complex and para-complex space forms are
examples of globally Osserman manifolds.

Since the Ricci tensor of a pseudo-Riemannian manifold is obtained from the
trace of the Jacobi operators, p(x, z) = tr(J(x)), any pointwise Osserman manifold
is necessarily Einstein and then it has constant sectional curvature in dimension 3.
In this case, pointwise and globally Osserman conditions are equivalent. Moreover,
Osserman condition is non-trivial for dimension > 4. Although the description of
Osserman manifolds is still an open question, in certain situations it is known a com-
plete classification (see [11,/12|40] and [59] for more information).

Remark 2.6. Let (M, g) be a four-dimensional pseudo-Riemannian globally Osser-
man manifold. It was shown in [12] that, if the Jacobi operators are diagonalizable,
then (M, g) is locally isometric to a real, complex or para-complex space form. Note
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Conformally Einstein homogeneous Riemannian manifolds

that there are many pointwise Osserman manifolds in dimension four which do not
correspond to the situation above [61]].

Observe that in Theorem (ii) the conformal metric (R*, g, = €3¢, ) is Ricci-
flat and anti-self-dual. Hence we obtain a pointwise Osserman manifold [61]]. Fur-
thermore, for any unit vector field X, the Jacobi operator J(X) = R(X, - )X has
eigenvalues 1 = 0, p = —e 3 and p = Je 3!, the latter with multiplicity two.
Since the non-zero eigenvalues are in a ratio —1 : % they do not correspond to the
eigenvalue structure of any globally Osserman manifold.

Conformally Einstein homogeneous metrics in Theorem (iii)

The eigenvalue structure of the self-dual and anti-self-dual Weyl curvature tensors
corresponding to Theorem [2.T}(iii) is given by:

Wi =a(a+1)diagla, —(a+1),1] = W, . (2.5)

This shows that {E;r JE;}, i = 1,2,3, define pairs of two-forms on G, so that
E;’ A E; =0and E;r A E;" = —FE; ANE; foralli = 1,2,3. Furthermore, writing
the structure equations of the Lie algebra (gq, (-, - )o) as

de* =0, del =etnet, de? = (a+1)%22net, ded =a’e Net, (2.6)

one has dE = 0; A EF with 61 = —(a? + 2o+ 2)e’, 02 = —(a® + 1)e* and 03 =
—(2a%+2a+1)e. Therefore { E;t, E; } is a conformal symplectic pair on G, for all
1 =1, 2,3 (see [7] for more information about symplectic pairs). In particular the six
two-forms EljE are conformally symplectic. Furthermore, integrating the expressions
in Equation [(2.6) gives coordinates (z,y, z, t) on R* where

el = e tdx, e = ef(aH)Qtdy, ed = eiO‘Qtdz, et = dt,
so that the metric expresses as
Jo = € 2dz® + 6_2(a+1)2tdy2 Bl Py 2.7)

As a consequence, (R%, g,,) has the structure of a multiply warped space of the form
R x ¢ Rx s, R x ¢ R. Finally, a straightforward calculation shows that the conformal

metric g, = e2(@”Te+Dtg  is Ricci-flat.

Remark 2.7. Bach-flat Kéhler metrics are conformally Einstein [48]. Due to the
conformal invariance of the Bach tensor, any Bach-flat conformally Kihler manifold
is also conformally Einstein. The converse result is certainly not true. For instance,
the eigenvalue structure of W+ shows that the homogeneous spaces corresponding
to Theorem [2.T}(iii) cannot be Kihler with respect to any conformal metric.
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2.2 Conformally Einstein symmetric spaces

Four-dimensional homogeneous Einstein manifolds are locally symmetric [[70]]. Fur-
thermore, any locally conformally flat homogeneous manifold is locally symmet-
ric [99]).

Lemma 2.8. A four-dimensional locally symmetric Bach-flat manifold is Einstein or
locally conformally flat.

Proof. Let (M*,g) be locally symmetric. Then it is an Einstein manifold or it is
locally a product of the form R x N3(c), R? x N?(c) or NZ(c1) x N2(cz), where
N¥(c) is a k-dimensional manifold of constant curvature c. In the case R x N3(c),
(M, g) is locally conformally flat since N3(c) is of constant curvature. An explicit
calculation of the Bach tensor shows that R? x N?(c), where N?(c) is a surface of
constant curvature, is Bach-flat if and only if ¢ = 0, thus (M, g) being flat. Finally,
the Bach tensor of NZ(c1) x N3 (c2) vanishes if and only if ¢ — ¢3 = 0, thus leading
to locally conformal flatness (c; = —c2) or to an Einstein manifold (c; = ¢2). (]

The above lemma shows that four-dimensional locally symmetric Bach-flat met-
rics are either Einstein or locally conformally flat. The existence of left-invariant
Riemannian metrics with zero Bach tensor which are neither conformally Einstein
nor half conformally flat was established in [1]. We will show that the examples
constructed by Abbena, Garbiero and Salamon are the only possible ones within the
framework of four-dimensional homogeneous manifolds.

2.3 Grobner bases

Grobner bases were introduced by Bruno Buchberger around the 1960’s. Ever since,
dozens of applications have been found for Grobner bases. Nonetheless, to the best
of our knowledge, this topic had never been applied in Riemannian geometry. This
section contains a short introduction to the theory of Grobner bases. In the rest of the
chapter, Grobner bases will play an important role.

2.3.1 Monomial order and ideals

The notion of order of terms in polynomials is the principal ingredient in the division
algorithm and Gaussian elimination, where the success of both algorithms depends
on working systematically with the leading terms of polynomials. Furthermore, we
might intuit that when we work with arbitrary polynomials in several variables, where
there is no standard order, the order we choose is fundamental. Based on this fact,
what properties should this order have?
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Given a monomial % = z{"* - - 24", the exponents o = (v, ..., ) are ele-
ments of Z%, and this observation establishes a one-to-one correspondence between
the monomials in R[z1, ..., z,] and Z%,. A monomial order > on R[z1, ..., xy] is

a relation > on ZY%, or equivalently, a relation on the set of monomials x“ where
a € 7%, satistying:

(i) > is a total order on Zgo.
(i) If o> fandy € Z%, then v+ > S + 7.
(iif) > is a well-order on ZZ,,.
We are specially interested in the following monomial orderings:

* Lexicographical Order: We say that o >, 3 if in the vector « — 3 € Z", the
leftmost non-zero entry is positive.

* Graded Lexicographical Order: We say that o > g,e, (if || > |5] or |a| =
|6] and o >, B, Where o] =, .

* Graded Reverse Lexicographical Order: We say that o > grepier 3 if || > | 3]
or |a| = | B3] and the rightmost non-zero entry of « — 3 € Z™ is negative.

The lexicographical order is analogous to the order of words used in dictionaries:
a>b>--->y>zorxy > x9 > --- > x,. Observe that a variable dominates
any monomial involving only smaller variables, regardless of its total degree. Hence,
we could take the total degrees of the monomials into account and order monomials
of bigger degree first and, after that, one may use the graded lexicographical order.

Let P = >, anx® be a non-zero polynomial in R[x1,...,z,] and let > be a
monomial order. The multidegree of B is the maximum a € ZZ so that a, # 0,
where the maximum is taken with respect to the given monomial order. The corre-
sponding monomial is called the leading term LT (P) = anx®. A monomial ideal
is a polynomial ideal that can be generated by monomials. Therefore, a polyno-
mial 3 belongs to a monomial ideal Z if and only if every term of ‘B3 lies in Z. Let
7T C R[zy,...,x,] be a non-zero ideal and fix a monomial order on R[z1,. .., x,].
We denote by LT'(Z) the set of leading terms of non-zero elements of Z, i.e.,

LT(Z) = {cx®: thereexists P € Z \ {0} with LT (*B) = ca®},

and we denote by (LT'(Z)) the ideal generated by the elements of LT(Z). Ob-
serve that LT'(;) € LT(Z) C (LT(Z)) which implies (LT (B1), ..., LT(Px)) C
(LT(Z)). However, it is important to emphasize that if Z = (P1,...,PBx), then
(LT(Z)) may be strictly larger than the ideal (LT'(31), ..., LT (Bx)).
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2.3 Grobner bases

For example, consider Z = (31,B2) the ideal generated by ; = 2% — 2xy and
Pa = 22y — 2y? + z, where we fix the graded lexicographical order on monomials.
Then z - Po — y - P1 = 22, so 22 € T. Therefore, 2> = LT (z?) € (LT(Z)) but
2% ¢ (LT (1), LT(%2)). Hence, (LT(I)) # (LT(¥1), LT(F2))-

The next result is crucial and it is known as the Hilbert Basis Theorem:
Theorem 2.9. [66|] Every ideal T C R[x1,...,xy,] has a finite generating set.

For monomial ideals this result is called Dickson’s Lemma. The importance of
the above result is not only that every ideal has a finite basis, but also that its proof is
based on (LT(g1),...,LT(gy)) = (LT(Z)) (see for example [45]).

Definition 2.10. Fix a monomial order on the polynomial ring R[z1, . . ., ;). A finite
subset G = {g1,...,8,} of an ideal Z is said to be a Grobner basis (or Grobner-
Shirshov basis) with respect to some monomial order if

(LT(g1), ..., LT(gv)) = (LT(1)) .

The Hilbert Basis Theorem guarantees that any non-zero ideal Z C R(xy, ..., xy)]
has a Grobner basis. Furthermore, any Grobner basis for an ideal Z is a basis of
Z. However, how can we know that a given basis of an ideal is a Grobner basis?
Buchberger’s algorithm (among others) provides a constructive algorithm to find one
such basis. This rather simple notion allows us to have simple algorithmic solutions
to different problems.

* The remainder of the division algorithm applied to a polynomial ¥ divided by
a Grobner basis G of an ideal Z is zero if and only if 3 belongs to Z, a property
that does not necessarily hold if G is not a Grobner basis. Therefore, this fact
provides an algorithm to check the Ideal Membership Problem.

* As another example, when the set of solutions of a polynomial system is not
too large, the calculation of a Grobner basis with respect to the lexicographical
order gives rise to elimination theory, simplifying the problem of finding all
common roots, thus generalizing the classical Gaussian method of the linear
case.

Just as a matter of curiosity, let us mention that Grobner bases even generalize the
simplex method used in mathematical optimization. We refer the interested reader
to [435]] for more information on the theory of Grobner bases.
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2.3.2 Grobner basis in homogeneous manifolds

One of the most important applications of Grobner bases is to eliminate variables. We
pleasantly found out that these methods can be very useful to classify homogeneous
geometric structures such as Einstein metrics, Bach-flat structures or Ricci solitons.

The components of the Bach tensor for a left-invariant metric on a Lie group
give polynomials on the structure constants. Hence, to obtain a full classification
of Bach-flat Lie groups, one needs to solve the corresponding polynomial system
of equations. When the system under consideration is simple, it is an elementary
problem to get all common roots, but if the number of equations and their degrees
increase, it may become a quite unmanageable assignment. Grobner bases theory
provides very powerful tools to solve large polynomial systems of equations. The
basic idea is to use elimination theory. But, how does elimination work? Consider
the following polynomial system:

2 ty+z=1, z4+9y°+z2=1, z+y+2>=1, (2.8)

andletZ = (22 +y+z2— Lz +y’+2— Lo +y+22—1) C Rlx,y, 2] be the
ideal. We compute a Grobner basis G of Z with respect to the lexicographical order
and we obtain:

g=z+y+z2*-1,

p=y-y—22+z
g3 =22y + 2> - 1),
g1 =22(2* =422 + 42— 1).

(2.9)

Since Equations [(2.8) and [(2.9)| have the same solutions and g4 involves only z, then
the possible 2’s are 0, 1 and —1 £ V2. Now, substituting these values into g and
g3 one can determine all possible solutions for y. Finally, g; gives the corresponding
x’s.

Given Z = (B1,...,Pr) C Rlzy,...,zy,], the v-th elimination ideal Z,, is the
ideal of R[zy11,...,zy] defined by Z, = Z N R[zy41, ..., zy]. Therefore, Z, con-
sists of all Py = --- = P = 0. In other words, eliminating x1, ..., x, means
finding non-zero polynomials in the v-th elimination ideal Z,,. It is important to em-
phasize that different order of the variables leads to different elimination ideals. Note
that if two sets of polynomials generate the same ideal, the corresponding zero sets
must be identical.

Proposition 2.11. [45] Let Z C R[z1,...,xy,) be an ideal and let G be a Gréibner
basis of T with respect to the lexicographical order. Then, for every 0 < v < n, the
set G, = GNR[x1,...,x,] is a Grobner basis of the v-th elimination ideal Z,,.
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The above result shows that a Grobner basis for the lexicographical order elim-
inates not only the first variable, but also the first two variables, the first three vari-
ables, and so on. Therefore, our strategy for solving the rather large polynomial sys-
tems consists of obtaining “better” polynomials that belong to the ideals generated
by the corresponding polynomial systems.

2.4 Left-invariant metrics on Rey x £(1,1) and Rey x F(2)

Let g = R x g3 be a semi-direct extension of the unimodular Lie algebra g3 = ¢(1, 1)
or g3 = ¢(2). Let (-,-) be an inner product on g and (-, )3 its restriction to gs.
Following the work of Milnor [82], there exists an orthonormal basis {vi, va, v3} of
g3 such that

[Va, V3] = A1y, [V3, V1] = Agva, [Vi,v2] =0, (2.10)

where A1, A2 € R and A\ Ay # 0. Moreover, the associated Lie group corresponds to
E(2) (resp. E(1,1))if A;Aa > 0 (resp. A\ A2 < 0). The algebra of derivations of g3
is given by

der(gs) = { | -

=Ra' gl

a c
a b d |;abec,deR
0 0

Let {v1,va, Vs, vy} be abasis of g, with {vy, va, v3} given by Equation [(2.10)} and
g = Rvy @ g3. Since Rvy needs not to be orthogonal to gs, set k; = (v;, vy), for
1 =1,2,3. Letéy = vyq — ZZ k;v; and normalize it to get an orthonormal basis
{e1,...,eq} of g =R @ g3 so that

[e2, €3]
[e3, 1]
[es, e1] = %{bel — 255 + k3)eat, (2.11)
[ea; e2]
(e, €3]

e4,e3| = %{(C — ]{72)\1)61 + (d+ klx\g)eg}, R>0.

Lemma 2.12. The Lie group Rey x E(1,1) admits a non-symmetric Bach-flat left-
invariant metric if and only if it is isomorphically homothetic to a Lie group deter-
mined by the solvable Lie algebra given by

lea, e3] = ex, [e1,e3] = (2 + V/3)ea,
[eq,e1] = V6 + 3v3e1, [es,ea] = V6 + 3/3es.
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Moreover, the Lie group Rey x FE(2) does not admit any non-symmetric Bach-flat
left-invariant metric.

Proof. We start analyzing the Bach tensor of Res x E(1,1) and Rey x E(2). In
order to simplify the expressions we use the notation A = )\% + k3, C = c— k)
and D = d + ki As. Moreover, since the structure constants of gs satisfy Ay Ao # 0,
one may work with a homothetic basis ¢, = ,\%ek so that we may assume A\; = 1. A
long but straightforward calculation shows that the components of the Bach tensor,
with the structure constants in Equation[(2.1T)] are given by

B = 572 P11, Bi2 = mrrPBiz, Bis = 3 PBis, Bu = 2P,
Boy = 57 B22, B2 = mrrPes, Bos = s Bas, Bz = s Pss,  (2.12)
B3y = o Pas, Bas = 5750 Bud,
where the polynomials 33;;’s correspond to:
P = 12(A% + R?)2\S — 4(A% + R?)2)\3 — (2002 — C? — 8D?)(A% + R*)\2
4 (124% — 4(2b% — 302 — D? — 6R?)A% — 42bC DA — 4R?(26® — 302 — D? — 3R%)) A

— 20A* + (286 — 40C?% + 3D? — 40R?) A2 — 42bC DA — 20R* + (3D? — 40C?) R?
—4(C? + D?)(5C? + D?) + b*(43C? + D? + 28R?),

Pio = —16b(A2+R?) AN —8CD(A?+R*)A3—(5C DA% —b(5C%—16D?) A+5C DR?*) Ay
+16bA3 — 8CDA? + b(160? — 5D? + 16 R?) A + CD(21b% — 8(C? + D? + R?)),

P13 = —8AD(A% + R?)A3 + (4AD(A? + R?) — 3bCR?)\3
+ (DA3 — 9bC A? + D(120* + R?* — 8(C? + D?))A — 12bCR?*) o
+ 3b(8C A% + 3bDA — 3b°C + 8C(C? + D? + R?)),

Pis = —8D(A? + R*)\] + (4DA? + 3bCA + 4DR?)\o
+ DA? 4+ 3bC A + D(3b* + R — 8(C? + D?)),

Pao = —20(A% + R?)2N\] + 12(A2% + R?)2\3 + (28b? + 3C% — 40D?)(A2% + R*)A\3
— (4A* + 4(20> — C? — 3D? + 2R?)A? — 42bCDA + 4R?*(2b*> — C? — 3D? + R?))\,
+ 12A% — (200> — 8C? — D? — 24R?) A% 4 42bCD A
+12R* + (8C? + D*)R? — 4(C? + D?)(C? + 5D?) + b*(C? + 43D? — 20R?),

Paz = —(AC — 24bD) (A% + R*)A\3 — (4(AC + 3bD)R* + A(4CA? + 9bD A + 9b°C)) A2
+8C A% +4C(2(C? + D? + R?) — 3b®)A — 3bD(3b* + R? — 8(C? + D?)),

Pas = —C(A2 + R2)AZ — (ACA2 — 3bDA + 4CR?) A,
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+8CA? + 3bDA — 3b2C + 8C(C? + D? + R?),

Paz = —4(A% — 3R?) (A% + R2)A3 + 4(A% — 3R?)(A2 + R?)\3
— ((120% + C? — 8D?*) A% + 3(4b* + C? — 8D?*)R?*)\}
+2(24% + 2(6b* — C? — D? — 2R?*) A% + 9bC DA + 6 R%(2b* — C? — D? — R?)) )\,
—4A* — (120 — 8C? + D? — 8R?) A% — 18bCDA
+ 12R* — 3(4b* — 8C? 4+ D?*)R? + 3(C? + D?)(4(C? + D?) — 19b?),

Psy = —8A(A% + R*)\S + 8A(A% + RN 4+ A(C? —8D?)\3
+ (843 +4(C? + D? + 2R?)A + 9bC D) \>
—8A3 —9bCD — A(8C? — D? + 8R?),

Puasg = 4(34% — R?) (A2 + R?)N\; — 4(3A* 4 2R?A? — RH)\3
+ ((4b? — 3C? + 24D?) A? + (4b® — C% + 8D?)R%)\3
+ (4R* — 4(2A% +20® + C? + D?)R? — 2A(6A3 + 40 A + 6(C? + D?)A + 9bC D)) A2
+12A% + (4b% + 2402 — 3D? + 8R?)A? 4 18bCDA
—4R* 4 (4b* + 8C? — D*)R? + (C? 4+ D?)(13b* 4 12(C? + D?)).

Hence, Rey x E(1,1) or Rey x F(2) admit a Bach-flat left-invariant metric if
and only if the structure constants in Equation satisfy the equations {3;; =
0}. Let Z C R[A,b, \2,C, D, R] be the ideal generated by the polynomials 3;;.
We compute a Grobner basis G of Z with respect to the lexicographical order and a
detailed analysis of that basis shows that the polynomial

go = DS(C?+ D*)(2D? + R?)(25D? + 4R?)(16D? + 5R?)

(2.13)
x(9D? + 16R?)(25D? + 24R*)(80D* + R* — 16 D% R?)

belongs to G. Since the zero sets of {;; = 0} and Z = (P;;) = (G) coincide, then
necessarily D = 0.

Next, we compute a Grobner basis G; of the ideal generated by G U { D} with
respect to the lexicographical order and we get that the polynomial

g1 = C*(90? + 4R*)(25C? + 16 R?)(49C? + 24R?)\3

belongs to G;. Thus, since A2 # 0, we get C' = 0.
Now, for C' = D = 0, Equation [(2.12)]implies that

Pss = —8(A2 — 1)2A(A* + R)(A3+ A2 + 1)
and therefore we are led to the following possibilities:

(1) Ao =1, (2)A=0.
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Case (1):

C =0,D =0, Ay = 1. In this case, a direct calculation shows that the correspond-
ing Lie group given by Equation is locally conformally flat and therefore a
symmetric manifold [99]].

Case (2):

C =0,D =0, A= 0. Excluding A = 1 solved in the previous case, Equa-
tion [(2.12)| implies that the Bach-flat condition is equivalent to

b — R*(A3+ X +1)=0, 3R*-b*(\g+4)=0,
from where it easily follows that
b==R, A2 = —1,

in which case a straightforward calculation shows that the manifold is Einstein and
thus locally symmetric [[70], or otherwise

b=+RV6+3V3, Ao =—2—+/3, or (2.14)
b==+RV6—-3V3, Jla=-24++3. (2.15)

Now, considering the isometry e4 — —e4 one has b > 0 in both cases. Setting
e1 = (2+ V3)ea, & = (2+V3)er, e3 = (2 + V3)es, &4 = (2 + V3)eq one
interchanges the brackets given by Equations [(2.15)| and [(2.14)l Moreover since this
isomorphism transforms the original metric (-, -) into a homothetic one (-, -)* = (2+
v/3)2(-,-) and we work modulo homotheties, we change the metric so that &; remains
an orthonormal basis. Hence we reduce this case to the homothetically isomorphic
Lie algebra given by b = R/6 + 3/3 with Ay = —2 — /3.

Note that A\; Ay = A2 < 0; hence the group is Rey x (1, 1) and a straightforward
calculation shows that this case is not locally symmetric. This finishes the proof. [

2.5 Left-invariant metrics on Re, x H3
Let g = R x b3 be a semi-direct extension of the Heisenberg algebra h3. Let (-, -) be
an inner product on g and (-, -)3 its restriction to h3. Then, there exists an orthonormal

basis {v1, Vs, v3} of h? such that (see [82])

[vs, va] =0, [vs,vi] =0, [V, va] = Agvs, (2.16)

54



2.5 Left-invariant metrics on Rey x H3

where A3 # 0 is a real number. The algebra of all derivations of h? is given with
respect to the basis {v1, v, v3} by

a1l Q12 0
der(h3) = Q91 Q99 0 3 Qg f, heR

~

h [ oo+ a

We rotate the basis elements {v1, va} so that the matrix A = (c;) decomposes as
the sum of a diagonal matrix and a skew-symmetric matrix. Hence

a c 0
der(h?) = —c d 0 sa,e,d, f,heR 3,
h f a+d

and consider the Lie algebra g = Rv4 @ b3 given by

[v3, va] =0, [v3,vi] =0,
[V17 VZ] = YV3, [V47 Vl] = avy — Cva + hVS?
[Va, Vo] = cvi +dva + fvs, [va,v3] = (a+d)vs.
Since Rv,4 needs not to be orthogonal to b3, set k; = (v;,v4), fori = 1,2,3. Let

és = V4 — y . k;jv; and normalize it to get an orthonormal basis {ey,...,es} of
g =R & b3 so that

e1, e2] = e,

leq, e1] = {aer — cea + (h + kav)es}, 217
leq, €3] = %(a + d)es,

[eq, 2] = %{cel +des + (f —k1y)es}, R>0.

Lemma 2.13. The group Rey x H? admits a non-symmetric Bach-flat left-invariant
metric if and only if it is isomorphically homothetic to a Lie group determined by one
of the following solvable Lie algebras:
(i) The Lie algebra given by
[e1, e2] = e3, [ea;e1] = €1 — aey,
[eq,e2] = aer + eo, [es,e3] =2e3.

In this case Rey x H? is half conformally flat.
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(ii) The Lie algebra given by

le1, ea] = e3, les, e4] = %63»

lea,e1] = 2V 7 —3V5Ber, [es,ea] = 1V T7+3V5es.

Proof. First we obtain the Bach tensor of Rey x H3. In order to simplify the ex-
pressions we use the notation F' = f — kyy and H = h + key. Moreover, since
the structure constant of h? satisfies v # 0, one may work with a homothetic basis
er = %ek so that we may assume v = 1. A long but straightforward calculation
shows that the components of the Bach tensor, with the structure constants in Equa-

tion are given by

1 1 1 1
Bi1 = g P11, Biz = P2, Bis = mrePis, Bua = mPia,

1 1 1 1
Boo = 57z Po2, Boz = P23, B = P, Bsg = g7z Pas,  (2.18)

B3s =0, Bus = 5777 Buas
where the polynomials 33;;’s correspond to:

P11 = 24ac’d — 16a3d + 48ad>® + 84a%c? + 16a%d? — 108c*d?
+ (F? —20(H? + R?))a? — 21(F? — H?)c? — 3(4F? + 19H? + 4R?)d>
+ 78FHac — 4(22H? + TR?*)ad + T8F Hed — 4(F? + H? + R?)(F? — 3(H? + R?)),

P12 = —58a’cd+58acd? —18ac+24ac® —24c3d+18cd® —12FHa? +21FHc? —12F Hd?
4 (3LF2— 2(4H? + R?))ac— 53F Had + (8F2 — 31H? + 2R)cd + 8F H(F2 + H? + R?),

P13 = 53Facd—3Fc—9HdA>+33Fa?c—28Ha’d+3Hac? —48Had?> +24Hc*d—9F cd?
+16H(F? + H? + R?)a — 8F(F? + H? + R*)c + 24H(F? + H? + R?)d,

P14 = —3Fa® + 3Fc® + 3Hac — 14Fad — 15Hcd + 8F(F? + H? + R?),

Poo = 24ac’d + 48a3d — 16ad® — 108a%c? + 16a%d? + 84cd>
—3(19F? + 4(H? + R?))a® + 21(F? — H?)c® — (20F? — H? + 20R?)d?
— 78FHac — 4(22F? + TR?)ad — T8FHed + 4(F? + H? + R?)(3F? — H? + 3R?),

Pos = —53Hacd—9Fa®+3Hc*+9Ha?c—48Fa?d+24Fac® —28Fad?+3Fc?d—33H cd?
+ 24F(F? + H?> + R?)a+ 8H(F? + H? + R?*)c + 16F(F? + H? + R?)d,

Poy = —3Hc? + 3Hd? — 15Fac + 14Had + 3Fcd — 8H(F? + H? + R?),

Pss = 24ac’d — 16a3d — 16ad® — 12a%c? — 48a%d? — 12c2d?
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+ (43F?% + 28(H? + R?))a® — 9(F? + H?)c* + (28F? + 43H? + 28R?)d?
—54FHac + (104(F? + H?) + 44R?)ad + 54F Hed — 20(F? + H? + R?)?,

Paus = —72ac%d — 16a3d — 16ad>® + 36a%c? + 16a2d? + 36c2d>
+ (13F? + 4(H? + R?))a? + 9(F? + H?)c® + (4F? + 13H? + 4R?)d*> + 54F Hac
— (16(F? + H?) — 12R?)ad — 54F Hed + 4(3(F? + H?) — R?)(F? + H? + R?).

Therefore, Rey x H? admits a Bach-flat left-invariant metric if and only if the
structure constants given in Equation satisfy the equations {J3;; = 0}. Let
7 C Rla,c,d, H, F, R] be the ideal generated by the polynomials J3;;. We compute a
Grobner basis G of Z with respect to the lexicographical order and a detailed analysis
of the Grobner basis shows that the polynomial

go = FRY(2F?+ R?)*(4F%*+R?)(F?+ H?+ R?)2(4F?+9R?)(9F2+11R?)
x ((F? — H?)? + F?R? + H?R?)(10000F* + 10200F? R? + 3087R*)
x (606208 F* + 861952F2R? + 144669 R*)

belongs to G. Since the zero sets of {;; = 0} and Z = (B;;) = (G) coincide and
R > 0, then necessarily F' = 0.

Next, we compute a Grobner basis G’ of the ideal generated by G U {F'} with
respect to the lexicographical order and we get that the polynomial

g, = H(H* + R*)(4H? + R*)(4H? + 9R?)(9H? + 11R?)

belongs to G’. Thus, we get H = 0.
Now, computing a Grobner basis G” of the ideal generated by G’ U {H} with
respect to the graded reverse lexicographical order we find that the polynomial

g0 = (a — d)(24c¢* — 8ad — R*)R?
belongs to G” and therefore we are led to the following possibilities:
(1)a =d, (2)24c®> — 8ad — R?> = 0.

Case (1):

F =0,H =0, a = d. In this case, Equation [(2.18)] implies that the Bach-flat
condition is equivalent to

4d* + R* — 5d°R? = 0,
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from where we easily get

d==+R or d:ig.

Ifd = ig, the manifold is half conformally flat and Einstein, thus locally symmetric
and homothetic to the complex hyperbolic plane. For d = £R, the isometry e4 >
—ey lets us to take d = R. Now, a direct calculation shows that the manifold is half
conformally flat and non-symmetric, hence obtaining Assertion (i) in Lemma [2.13]
Furthermore, it follows from [47] that all the Lie groups in Lemma [2.13}-(i) are iso-
metric.

Case (2):
F=0,H =0, 24c?> — 8ad — R* = 0. Equation[(2.18)]implies that

P12 = —(a — d)c(18a* + 18d* + 68ad + R?).

Since a = d was already solved in the previous case, we compute a Grobner basis G
of the ideal generated by G” U {c(18a? + 18d* + 68ad + R?)} C R[R,a,c,d, H, F
with respect to the lexicographical order and we get that the polynomial

go = cd*(25¢* + 18c2d? + d*)(961c* + 1298¢%d? + 121d*)
belongs to Gs. Thus, we have two possibilities:

(2.i)d =0, (2.ii)c=0.

Case (2.i):

F=0,H =0,24c®> — 8ad — R? = 0, d = 0. In this case, from Equation [[2.18)] we
get that the Bach-flat condition is equivalent to

33a%c> — R* =0, ac(3a® + 4¢*) =0,

which does not hold since R > 0.

Case (2.ii):

F=0,H=0,24c® — §ad — R? =0, c=0. Since d = 0 was solved in the previous
case, we have a = — £ and Equation implies that the Bach-flat condition is

equivalent to
64d* — 56d°R* + R* = 0.
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2.6 Left-invariant metrics on Rey x R3

Thus, it follows that

1

d= iZR\/7—3\/5 or (2.19)
1

d= iZR\/7+3\/5, (2.20)

and a straightforward calculation shows that none of these cases is locally symmet-
ric. Note that if we take e4 +— —ey one may assume that d > 0 in both cases.

Moreover, taking e = —eg, €3 = —ej, €3 = —es, 4 = —ey, one reduces this case
to an only homothetically isomorphic Lie algebra. For d = —iR\/ 7+ 3v/5 we get
Assertion (ii) in Lemma[2.13] finishing the proof. O

2.6 Left-invariant metrics on Re, x R?

Let g = R x t3 be a semi-direct extension of the abelian Lie algebra v3. Let (-, -) be
an inner product on g and (-, -)3 its restriction to v3. The algebra of all derivations
D of t? is gl(3,R). If we fix ® € gl(3,R), there exists a (-, -)3-orthonormal basis
{v1,v2,v3} of t® where ® decomposes as a sum of a diagonal matrix and a skew-
symmetric matrix. Hence

a —b —c
der()=<q | b f —h |iabec fhpeR
c h p

Now, the corresponding semi-direct product g = R x t3, is given by

[Vla V2] = 07 [v17V3] = 07
[va,v3] =0, [Va, V1] = avy + bvy + cvs,
[V4, Vo] = =bvi + fva + hvs, [vy4,V3] = —cvi — hva + pvs,

with respect to some basis {vi,va,vs, v4} so that g = Rvy @ span{vy, vy, vs}.
Since Rvy4 needs not to be orthogonal to v3, set k; = (v;,vy), fori = 1,2,3. Let
€4 = v4 — y_,k;v; and normalize it to get an orthonormal basis {eq,...,es} of
g =R @ t3 so that

leq, e1] = %{ael + beg + ces}, leq, e2] = %{—bel + fea + hes},

(2.21)
le4,e3] = R{—ce1 — hea + pes}, R>0.

Lemma 2.14. The group Rey x R3 admits a non-symmetric Bach-flat left-invariant
metric if and only if it is isomorphically homothetic to a Lie group determined by one
of the following solvable Lie algebras:
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(i) leaser] =e1, [es,ea] = Jea+aves, [es,e3] = Jes—aves.
(a+

(ii) lea,e1] = e1, [eq,e2] = (@ +1)%ey, [eq,e3] = o’ es, a>0.

Proof. A long but straightforward calculation shows that the components of the Bach
tensor of Rey x R3, with the structure constants in Equation [(2.2T)] are given by
B = P11, Biz = grPi2, Biz = grrPis, B =0,
Bos = srrPBaz, Bz = Pz, Boy =0, Bz = s Pss,  (2.22)
B3y =0, By = grrPas,

where the polynomials 3;;’s correspond to:

P11 = a*+9a2b*> +9ac? — (f +p)a® +6(f +2p)ab® +6(2f +p)ac? — (2f2 +2p* +Tfp)a®
= 3f(5f +4p)b® — 3p(4f + 5p)c® + 18N (f — p)be + 3(f +p)(f* + p*)a
—(f = p)2(f* + 30> + p* + fp),
Pio = —12abc? — 2a3b — 12ab> + 126> + 2(9f + 5p)ab + 6ha’c + 3(f + 3p)bc?
— (182 + 3h? — p*)ab + 6h(2f — p)ac + (2% + 12fh% — 10f?*p — fp? — 9h2p)b
+ 6h(f +p)(f — 2p)c,
Piz = —12ab%c — 2a3c — 12ac® + 12pc® — 6ha®b + 2(5f + 9p)ac + 3(3f + p)b*c
+ 6h(f — 2p)ab+ (f2 — 3h% — 18p®)ac + 6h(f + p)(2f — p)b
+ (2p% — 9fh2% — f2p — 10fp? + 12h%p)c,

Paoo = —a* — 15a%b% — 3ac? — 18habc + (3f + p)a® + 6(f — 2p)ab? + 6pac?
— f(2f — 3p)a® + 3f(3f + 4p)b? — 3p*c? + 18hpbc
—(f*=p* =12fR> +7f°p—3fp* +12h°p)a+ (f —p)(f> +p* +9fh* = 2fp® +15h%p),

Paz = —12a2bc — 6(f + p)abe + 9hab® — 9hac® + h(f — p)a® — 3h(4f — p)b?
= 3h(f — 4p)c® + 6(f +p)?bc + 10h(f? — p®)a — 2h(f — p)(f* — 8pf + 6h* + p?),

Pz = —a* — 3a2b? — 15a%c? + 18habe + (f + 3p)a® + 6 fab? — 6(2f — p)ac?
+p(3f — 2p)a? — 3f2b + 3p(4f + 3p)c® — 18fhbe
+(fP =P +3f2p—Tfp* —12fh?* +12h*p)a— (f —p)(f*+p* = 2f*p+ 15fh* + 9h*p),

P = a* + 9a20* + 9a>c® — 3(f + p)a® — 18fab® — 18pac® + (4f? + 4p* + fp)a?
+9/202 + 9p?c* — (f +p)(3f% + 3p* —4fp)a+ (f —p)*(f> +9h* +p* — fp).

Hence, Re, x R3 admits a Bach-flat left-invariant metric if and only if the struc-
ture constants in Equation satisfy the equations {3;; = 0}. We consider
separately the cases a = 0 and a # 0.
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Casea =0

Let Zy C R[b, f,c, h,p] be the ideal generated by the seven polynomials 93;; in
Equation We compute a Grobner basis Gy of Zy with respect to the graded
reverse lexicographical order and get that it contains the polynomial

go =p°(f —p)*.
Since the zero sets of {;; = 0} and Zy = (P;;) = (Go) coincide, we are led to the
following cases:

Case (1):
a =0, p = 0. In this case, one checks using Equation [2.22)| that
Pas = f2(9 + 7 + 9h?)

and therefore necessarily f = 0. Now, a direct calculation shows that, in such a case,
the manifold is Einstein and therefore symmetric [[70]].

Case (2):
a =0, f = p. Equation [2.22)] implies that
Puag = 9(b2 + 62)p2 .

Since p = 0 corresponds to Case (1), we have b = ¢ = 0 and a direct calculation
shows that the manifold is locally conformally flat and thus symmetric [99].

Casea # 0

Taking a # 0 in Equation[(2.21)] we may work with a homothetic basis € = Ley so
that we may assume, without loss of generality, a = 1.

Let Z C Rip, f,b,c, h] be the ideal generated by the seven polynomials ;; in
Equation[(2.22)] Computing a Grébner basis G of Z with respect to the lexicographi-
cal order we find that the following polynomial is in the basis:

g = (f — 1)ch?(24h° + 69h* — 12h% — 8)(128h°5 + 63h* — 324h> — 216)(16h2 + 9)
% (16h2+81)(80h*+95h2+32)(464h* +2175h2 +1824)(2116h* +4884h2 +1089)

x (49532953600h ' 4 1009313292004 + 67210421265h% + 16039857600h5
+ 1904414976k + 177168384h2 + 11943936)

x (14705175456768h'2 —11441136851376h1° +3165906982755h°
+ 5805024905605 + 263837594880h" + 2944180224h% + 127844352) .
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Note that only the first five factors provide real roots, so we consider the following
cases:

(1) f =1, (2)c=0, (3)h =0,
(4) (24h® + 69h* — 12h? — 8)(128h° + 63h* — 324h2 — 216) = 0.

Case (1):

a =1, f = 1. We compute a Grobner basis G of the ideal generated by GU{ f—1} C

Rip, f, b, ¢, h] with respect to the lexicographical order, and we get that
gi=(p-1)c and g =(p—1)h

belong to G;. Thus, we have two possibilities:

(Li)p =1, (Lid)e=h=0.

Case (1.i): a = 1, f = 1, p = 1. In this case, a direct calculation shows that the
manifold is Einstein and therefore symmetric [[70].

Case (1.ii): a =1, f = 1, ¢ = h = 0. Equation[(2.22)| implies that
Pas = (p—1)’plp —4).

Note that p = 1 corresponds to the previous case and for p = 0 a direct calculation
shows that the manifold is locally conformally flat and thus symmetric [99]. Now,
if p = 4, Equation shows that the manifold is Bach-flat and, moreover, one
easily checks that it is non-symmetric. This is a particular case of Assertion (ii) in
Lemma[2.14]if b = 0 (taking o = 1 and using the homothetic isomorphism &; = ej,
€y = e3, €3 = €9, €4 = e4). If b # 0, it corresponds to Assertion (i) just considering
the homothetic isomorphism e; = %63, ey = %62, e3 = iel, = % eq.

Case (2):

a = 1, ¢ = 0. We consider the ideal generated by G U {¢} C R|p, h, f,b, | and
compute a Grobner basis Go for it with respect to the lexicographical order, obtaining
that the polynomial

go = (f—1)b%(* 4 90b% + 81)(5b* + 50 + 2)(25b* + 20> 4 1)
x (49b* +138b? 4-9) (7250 +8613b% +2850)(2116b* +-4884b% +1089)
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belongs to Go. Excluding f = 1 solved in Case (1), the only real root for go corre-
sponds to the factor b2, so necessarily b = 0.

Next, we compute a new Grobner basis G for the ideal generated by G, U {b} C
R[p, f, b, ¢, h] with respect to the lexicographical order and we find that the polyno-
mials

gh = (f — 1)(4f — 1)h?(8h* — 1)(8h* + 3)(8h? + 9),
gy = (f — 1)(4f — 1)h2(320fh* +128h*+320 fh? +40 f2+152h% —5 f +4)

belong to G}. As a consequence, and since f = 1 was solved in Case (1), one easily
checks that we have two possibilities:

(2.4) f = 1, (2.ii) h = 0.

Case(2.i): a=1,¢=0,b=0, f %. Computing a Grobner basis Go; for the
ideal generated by G, U{4f —1} C R[p, f, b, ¢, h] with respect to the lexicographical
order we get that the polynomial

g21 = (4p— 1)(4p - 9)
belongs to Go1. Now, we have:

« If p = 1, Equation[(2:22)]implies that the manifold is Bach-flat and, moreover,
one easily checks that it is non-symmetric, corresponding to Assertion (i) in

Lemmal[2.14]

e Ifp= %, then we use again Equation to get that the Bach-flat condition
is equivalent to h = 0 and, in such a case, a direct calculation shows that
the manifold is non-symmetric. This is a particular case of Assertion (ii) in
Lemma just taking o = % and considering the homothetic isomorphism
€] — €1,€2 = €3, €3 = €92, €4 = €4.

Case (2.ii): a = 1, ¢ = 0,b = 0, h = 0. We compute a Grobner basis Goo for
the ideal generated by G5 U {h} C R|p, f, b, ¢, h] with respect to the lexicographical
order and we find that the polynomial

g =(-D((f-p?-2f -2+ )(f*+ [+1)
belongs to Goo. Excluding f = 1 solved in Case (1), it follows that necessarily
f=0+yp)? or (2.23)
f=(=14+vp)? (2.24)
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and Equation [(2.22)| shows that the manifold is Bach-flat in both cases. Now, we set
p = a? with f = (1 + «)? in the first possibility and p = 82 with f = (=14 )2 in
the last one. Taking & = —14 3 and considering e; = e1, €2 = €3, €3 = €2, €4 = €4,
we get that the two possibilities are homothetic so we identify both cases. Moreover,
a straightforward calculation shows that if f = 0 or p = 0 the manifold is locally
conformally flat and thus symmetric [99]], while it is non-symmetric if f - p # 0. This
last case corresponds to Assertion (ii) in Lemma|2.14

Case (3):

a = 1, h = 0. We consider the ideal generated by G U {h} C Rip, f, b, c, h] and
compute a Grobner basis Gs for it with respect to the lexicographical order, obtaining
that the polynomial

g3 = (f — 1)eb(14¢? + 33)(5¢* — 25¢2 + 32)(1421¢* + 28623¢% + 45600)

belongs to Gs. Since f = 1 and ¢ = 0 were solved in the previous cases, we get that
necessarily b = 0.

Next, we compute a Grobner basis G for the ideal generated by Gz U {b} C
Rlp, f,b, ¢, h] with respect to the lexicographical order and the polynomial

gh = (f = DA(f —4) f(c* +90¢ + 81)(25¢* 4 2¢% + 1)(49¢* + 138¢% + 9)
belongs to G5. As a consequence, we must consider the following two possibilities:

(B3.4)f=0, (3.i)f=4.

Case (3.i): a =1, h = 0,b = 0, f = 0. Equation [(2.22)| implies that the Bach-flat
condition is equivalent to p = 1 and, in that case, a direct calculation shows that the
manifold is locally conformally flat, and thus symmetric [99].

Case (3.ii): a = 1, h = 0,b = 0, f = 4. Assuming ¢ # 0, since it was solved in
Case (2), a straightforward calculation using Equation[(2.22)]shows that the Bach-flat
condition is equivalent to p = 1. Moreover, a direct calculation shows that, in such
a case, the manifold is not symmetric. If one takes e; = % €9, €y = % e1, €3 = +e3,
ey = % ey, then it corresponds to a homothetic case of Assertion (i) in Lemmam

Case (4):

a =1, (24h% 4+ 69h* — 12h% — 8)(128h° + 63h* — 324h? — 216) = 0. In this last
case, it is hard to get a good Grobner basis if we use G as the starting point as in the
previous cases. Instead, we analyze in detail the polynomials in G (39 specifically)
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and we find that excluding the factors previously solved (i.e., factors involving f — 1,
c and h), just one of those polynomials depends only on ¢ and h and has the form

g1 = (f — Dech®Q(c, h)

where Q(c,h) = 6c* + S(h)c? + T(h), with § > 0 and where S(h), T'(h) are
polynomials with only even powers of h.

In the last step, we use the polynomial Q(c, h) to compute a Grobner basis G4 of
the ideal generated by

Q(c, h) U {(24h® 4 69n* — 121 — 8)(128h5 + 63h* — 324h* — 216)} C R[c, h]
with respect to the graded reverse lexicographical order and we find that
g, = 940895432818 +3490462417c*h* 4-8504049964c?h® +631105440c°
+48352913472h5 +4976629248¢* h? 4 38523345312¢2h* 45583229368 ¢*
+72029134968h* +37011199020c?h? +10563992784c> 4-38487215664h2

+5890415904
belongs to G4. Therefore we conclude that there is no solution in this case, finishing
the proof. O

2.7 Left-invariant metrics on SL(2,R) x R and SU(2) x R

Let g = g3 x R be a direct extension of the unimodular Lie algebra g3 = sl(2,R) or
g3 = su(2). Let (-, -) be an inner product on g and let (-, -)3 denote its restriction to
g3. Following the work of Milnor [82], there exists an orthonormal basis {v1, ve, v3}
of g3 such that

[Va, V3] = A1vi, [V3, V1] = Aava, [Vi, V2] = Agvs, (2.25)

where A1, A2, A3 € R and A\ 23 # 0. Moreover, the associated Lie group cor-
responds to SU(2) (resp. SL(2,R)) if A\, A2, A3 are all positive (resp. if any of
A1, A2, A3 is negative).

Let {v1,va,v3, v} be a basis of g such that {vy, vo, v} are given by Equa-
tion and g = g3 ® Rvy. Since Rvy needs not to be orthogonal to g3, set
ki = (vi,vy4), fori = 1,2,3. Let é4 = v4 — >, k;v; and normalize it to get an

orthonormal basis {ej,...,es4} of g = g3 & R so that
[e1, e2] = Ases, [e2, €3] = Aren,
[63, 61] = )\262, [61, 64] = %(kg)\geg - k‘g)\geg), (226)

[e2, €4] = 1 (k1Ases — kshier), [es, es] = (kadier — kidoes),
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where R > 0.

Lemma 2.15. The Lie groups SL(2,R) x R and SU(2) x R do not admit any non-
symmetric Bach-flat left-invariant metric.

Proof. Since the structure constants of g3 satisfy A\; AoA3 # 0, one may work with a
homothetic basis e, = )\%ek so that we may assume A\; = 1. A long but straightfor-

ward calculation shows that the components of the Bach tensor of SL(2,R) x R or
SU(2) x R, with the structure constants in Equation are given by

1 1 1 1
B11 = gypr P11, B2 = P2, Bz = P13, B = 5 Pu,
1 1 1 1
Bogr = gipr P22, Basz = mr P23, B = 3z P2, B3z = 5Pz, (2.27)
1 1
%34 = 12R3q3347 %44 = 24R4q3447

where the polynomials 3;;’s correspond to:

P = —4(A2 — A3)2 (A + A3 + Aods)kt
+4(305 — A3 +3X\3 — 5)k3
+4(303 — A3 +3X\2 — 5)k3
— (A3 —4)A3 +24)2% — (8A3 +4A3 + 3)A3 + 2(20% + A3 — 6)Aah3) kT3
+ (8A3 —4(X3 — A3 — (A3 — 1)(A3 + 3)A3 — 2403 + 4( A3 + 3) Ao A\3)kik?
+ ((4(623 — 1Az + 1)AZ — 2(202 4+ A3 — 6) Ao + (A3 + 12)\3 — 40)k3 k3

+ RZ(\y — )\3)2(8/\5 + 8)\§ + (BA3+4) Ay +4X3 + 3)k%
—R?2(M3 — D)((BA3 + 1)A2 +4((3X3 + 2)A3 + 3) A2 — 8(((3A3 +2) A3 + 2) A3 + 5))k3
- R2()\2 - 1)((3)\2 + 1))\% -+ 4((3)\2 + 2)/\2 -+ 3))\3 - 8(((3/\2 -+ 2))\2 —+ 2)/\2 + 5))]€§

FARYBM — (BAs+ A3+ (BAs — DAZ+MA2A5 + (=302 + A3 — D)As +3) Ao +3X3 —5),

Pro = (Ao — A2)((8Xz + 5)Aa + 8)ky kok?
(8N 8 — (s — 03As — (g — DA,
— (8)\% - 4)\% - )\% + (/\3 + 4))\2)\3 — 8)\2)]€1k)§
—R2(8)\§—4(/\2+1)/\§—((/\2—3)/\2+1)>\§+10(>\2+1))\2>\3—((8/\24—5)/\24—8))\2)]{}1/452,

Pz = —(A3 — X3)((8\3 + 5) A3 + 8)k1 k3ks
— (8M\3 — 8A3 — (4h2 — D)AZA3 — (A2 — 4) Ao M)k ks
+ (83 — (8A3 — 42 + Aods — Ao + 403) N ki K3
—R2(8A I —4(A3+1)A3— (A3 —=3) A3+ 1D)A3+10( A3+ 1) A2 A3 — ((8X3+5) A3 +8) A3 ) k1 k3,

m14 == —8()\2 - )\3)2(>\% + )\g + )\5)\2)]€:1))
— (S)é — 4()\2 + 1))\% - ()\2 — 1)2>\§ + 8)\% — 4()\2 + 1))\2)\3)]{71/{3%
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— (8)\;1 — 4()\3 + 1))\% — ()\3 — 1)2)\3 + 8/\:23 — 4()\3 + 1))\2)\3)/{1]{%
— R%(M\2 — X3)%(8A3 + 82 + (8A3 — 4)\g — 4A3 — 1)ky,

Poz = —4(5X; — 3A5 — 3A3As + A3 ki

=4\ = A = A3+ 1)k3

—4(578 —3\3 + \a — 3)ki

+ (3((A3 +4)A3 — 8)A3 + (8A2 — 4X3 — 1)AZ +2((2\3 — 1)A3 + 2) Ao )3)k?k3

— (400 —12(A3 + 1)A3 — (A3 — 1)20% — 2402 + 4(\3 + 1) Ao A3) k7 k32

— (3(8A3 — 44Xz — DA — (4N —2\3 +4) Ao + (A3 + 4 A3 — 8)k3k3
—R2(40M5—12(2A 3+ DA3+ (A3 —1)A3—3(8A2 — 43— 1)A3 —2(—4A2+2)\3+1) Ao A3 ) k2
+ R* (A3 — 1)2(3A3 + 4(X3 + 1)A2 + 8(A + A3 + 1))k3

+ R?(X2 — 1)((A2 + 3)A2 + 4((3A2 + 2)A2 + 3)A3 — 8((A2(BA2 + 2) + 2) A2 + 3))k3
—4R*(5X3 —3(A3 + A3 + 233+ (A3 — 1D)2(A3 + DA — 3(A5 — A3 — A3 + 1)),

Paz = (AaA3 — 1)(8A3 + 8A3 + 5o 3)kTkaoks

+ (A3 4 (BX2 — 4A3 — 1)Ag 4+ 4) A3 — 8)k3ks

+ (((8A2 — 4)Ax)3 + Ao — Az + D)Xy — 8)kok3

+R2(8A3A3+ (5( A3 —2) A3+ D)AZ 4 (223 — 3) (43 + 1) A3 +4) Ay + (A3 +4) A3 — 8)koks,
Pos = —8(\4 — A3 — A3 + 1)k3

— (823 — 42 + DA+ 82 — (Mg — 1)222 — 4( g + 1) Ao A\3)kPks

— ((8A2 — 4Xg — 1)A2 — (4A2 — 2X3 + 4) Ay — (A3 + 4) A3 + 8)kok2

+ R?(A3 — 1)2(A3 + 43 + D)Aa — 8(\2 + A3 + 1))ko,

Pas = 4(3A3 — 5A3 — A3A3 + 33kt

—4(5M8 — 33 + A3 — 3)ka

—4(A3 = A3 = Ao+ 1)k3

— (40A5 — 12(Ng 4+ 1A — 2422 — (Ao — 1)202 +4( g + 1) A2 A\3)k2E2

+ (8A 4+ 4(A3 — 1)A3 4+ (A3 — 1)(BA3 + 1)A3 — 2473 + 4(3X3 + 1) Ao 3)kTk?

— ((4(623 — DAz + 1)AZ = 2(2X3 + 1)(3A3 — 2)A2 — (3A\3 + 4) A3 — 8)k3k3
+R%(2403 —40A3 —4(2A3+3)A3 + 1223 + (4A3 —3) A3+ A3 +2(2(6A3 — 1) A3+ 1) Ao A3 ) k7
+ R%2(A3 — 1)((A3 + 3)A3 + 4((3A3 + 2)A3 + 3) A2 — 8(((BA3 + 2) A3 + 2)A3 + 3))k3

+ R?(Na — 1)2(802 + 4(A3 + 2)A2 + (B3 + 4) A3 + 8)k3

—4AR*(5XA3 —3(A2 + DA3 + 2202+ (M2 — D22+ A3 — 3(Aa — 1)2(A3 + Ag + 1)),

Pas = 8\ — A3 — Ay + 1)k
— (8)\‘21 — 4()\3 + 1))\% — ()\3 - 1)2)\3 + 8)\§ — 4()\3 + 1))\2)\3)/6%]63
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— ((8A2 — 43 — 1)A2 — (4N — 2X3 + 4)Aa — (A3 + 4)A3 + 8)k2ks
“R2(0g — 1)2(802 — 4(M5 — 2)Xa — (A3 + 43 + 8)Es,

Pas = 12(A2 — X3)2(A2 + A2 + A3 A\2)k}
+12(A3 — 1)2(A\3 + X3 + 1)k3
+12(A2 — 1)2(A3 + Ao + 1)k3
+3(8A3 —4(Aa + A3 +8X2 — (M2 — 1)202 —4(Ng + D) A2A3)k2k32
+3(8A3 —4(A3 + A3 — (A3 — 1)2A2 + 822 — 4(\3 + 1) A2 \3)k2k32
+3((8M2 —4X3 — 1)A3 — 2(202 — A3 +2)Aa — (A3 + 4) A3 + 8)k3k2
+ R%(Aa — A3)%(BA3 + 803 + (83 — 4) Ao — 4A3 — 1)k}
—R2(A3 —1)2(M2 +4(A3+ D2 — 8(A3 + X3 + 1))k3
+ R2(Ay — 1)2(8X2 — 4(A3 — 2)Aa — (A3 + 4)A3 + 8)k2
— AR — D3+ DA+ 2203 — (A3 — 1)2(A3+ Do+ (M3 — 1)2(A2+ A3+ 1)).

Therefore, SL(2,R) x R or SU(2) x R admit a Bach-flat left-invariant metric if
and only if the structure constants in Equation [(2.26)|satisfy the equations {3;; = 0}.
Let Z C R[Ag, A3, k1, k2, k3, R] be the ideal generated by the polynomials B;;. We
compute a Grobner basis G of Z with respect to the graded reverse lexicographical
order. A detailed analysis of the Grobner basis shows that the polynomial

g0 = (Ao — Ag)kik3k3 (K3 + k3 + R®) (kT + k3 + K3 + R?) (2.28)

belongs to the basis. Since the zero sets of {*3;; = 0} and Z = (;;) = (G) coincide,
we are led to the following cases:

(1) A2 = s, (2) k1 =0, (3) ks = 0, (4) ks = 0.

Case (1):

A2 = 3. A direct calculation using Equation [(2.27)]implies that
Pia = =33 — 1)%k1 (k3 + k5)A3

and therefore we have the following possibilities:

(1i)Ag = 1, (Lii) k1 = 0, (Liii) ky = ks = 0.

Case (1.1):

Ao = A3, A3 = 1. In this case we have Ay = Ao = A3 = 1 and a direct calcu-
lation shows that the corresponding Lie group given by Equation is locally
conformally flat, and thus a symmetric manifold [99].
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Case (1.11):

A2 = A3, k1 = 0. Computing a Grobner basis of the ideal generated by G U {\o —
A3, k1} with respect to the graded reverse lexicographical order, we find that the
polynomial

g1z = (A3 — 1)(k3 + k3 + R*)*R?

belongs to the ideal, leading to the solution A3 = 1 in Case (1.1).

Case (1.iii):
A2 = A3, ko = k3 = 0. A direct calculation using Equation shows that
Pag = —4(\3 — 1)?R*

and thus A3 = 1, which corresponds to Case (1.i).

Case (2):

k1 = 0. Computing a Grobner basis G2 of the ideal generated by G U {k1} with
respect to the graded reverse lexicographical order, one has that the polynomial

g2 = kokz( Mo — A3)(k3 + 2R?)(k3 + k2 + R?)?

belongs to the basis. Since Ay = A3 was solved in Case (1), we have the following
possibilities:
(2.7) ko = 0, (2.7i) ks = 0.

Case (2.1):

k1 = 0, ko = 0. We compute a Grobner basis Go; of the ideal generated by Go U {k2}
with respect to the lexicographical order and we obtain that the polynomial (A3 —
1)2)\§R6 belongs to the basis. Since A3 # 0 the only possible solution is A3 = 1.
Now, computing a new Grobner basis G5, of the ideal generated by Go; U {\3 — 1}
with respect to the graded reverse lexicographical order we find that the polynomial
(A2 — 1)A3R* belongs to the basis. Thus we get the solution A\ = A3 = 1 which
corresponds to Case (1.i).

Case (2.ii):

k1 = 0, k3 = 0. Considering the ideal Go U {k3} and computing a Grobner basis with
respect to the lexicographical order, we find that the polynomial ks(\3 — 1)%(k2 +
R?)3 belongs to the basis. Since k2 = 0 was treated in the previous case, we have
A3 = 1, which together with k; = k3 = O let us to get PByy = —4(Xa—1)2A3R* from
Equation Hence, necessarily Ao = A3 = 1 and we are again in Case (1.i).
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Case (3):

ko = 0. Computing a Grobner basis Gs of the ideal generated by G U {kg} with
respect to the graded reverse lexicographical order, we find that the polynomial

g5 = (2 — (A3 — Dks(k + R)(k] + k3 + R*)R?
belongs to the basis. Therefore we consider the following possibilities:

(3.i) Ay = 1, (3.ii) A3 = 1, (3.iii) ks = 0.

Case (3.1):

ke = 0, A2 = 1. Adding the polynomial A5 — 1 to G3 and computing a Grobner
basis with respect to the lexicographical order, we find that the polynomial (A3 —
1)k3(3k3 + R?)R? belongs to the basis. Therefore, we are led to the previously
considered Case (1) or Case (2).

Case (3.ii):

ko = 0, A3 = 1. Adding the polynomial A3 — 1 to G5 and computing a Grébner basis
with respect to the lexicographical order, we find that the polynomial (\y — 1)k R*
belongs to the basis. Therefore, we are led to the previously considered Case (1) or
Case (2).

Case (3.1i1):

ky = 0, kg3 = 0. Adding the polynomial k3 to G3 and computing a Grobner basis
with respect to the lexicographical order, we find in this case that the polynomial
(A3 — 1)2)\2 RS belongs to the basis. This leads to Case (3.ii).

Case (4):

ks = 0. Computing a Grobner basis G4 of the ideal generated by G U {k3} with
respect to the graded reverse lexicographical order, we find that the polynomial

g1 = kika(A3 — 1) (k3 + R?)?(k} + k3 + R?)(k? + k2 + 4R*)R?

belongs to the basis. Since the cases k; = 0 and k2 = 0 were already considered,
one necessarily has A3 = 1. Using Equation [(2.27)] since k3 = 0 and A3 = 1 we get
Poy = —3k?ka (A2 — 1)2. Therefore, Ay = 1 = A3 and this leads again to Case (1),
finishing the proof. O

70



2.8 Conformally Einstein four-dimensional Lie groups

2.8 Conformally Einstein four-dimensional Lie groups

The purpose of this section is to complete the proof of Theorem [2.1] based on the

analysis in sections

Proof of Assertion (i) in Theorem[2.1} We consider the different Lie groups given by
Lemma Let (-, - ) be the left-invariant metric determined by Lemma @@).

Considering the homothetic metric (-, - )* = %( -, - ), the Ricci operator of (-, -)*
takes the form Ric = —% diag[4, 1, 1, 3] in the basis {e1, . . ., e4 }. Moreover, the self-

dual and anti-self-dual Weyl curvature operators become W+ = % diag[1, 1, —2]
in the induced basis of self-dual and anti-self-dual two-forms. The expressions of
W# show that the Weyl curvature operator has maximal rank. Hence, the necessary
condition in Theorem [I.14}-(ii) to be conformally Einstein is also sufficient. Let
T € g be an arbitrary vector and set T = ) T*ej,. A straightforward calculation
shows that (divy W)(e;, €5, ex)—W (e;, €4, e, T) = Oif and only if T = —% e4. This
shows that left-invariant metrics given by Lemma [2.14}-(i) are conformally Einstein.

Now, denoting by W;; the Weyl endomorphism given by W (e;, e;), the non-zero
components of the Weyl tensor of type (1,3) are given by:

0 £ 00 0 0%1o0
W_—gooo w._| 0 000
"l o ooof| " [-Loo0o0]

0 000 0 00 0

000 —1 00 0 0
| 000 0 W_oo-io
““looo o |" " {0l 0o 0]

100 0 00 0 0

00 00 00 0 0
W_oooé W | 00 00
““lo o oo " oo o !

1 1

0 -1 00 00 —% 0

Since the Weyl tensor of type (1,3) does not depend on «, then it now follows from
the work of Hall [63]] that all the left-invariant metrics in Lemma [2.14}-(i) are homo-
thetic (but not necessarily isomorphic). This completes the proof of Assertion (i) in
Theorem 2.1 O
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Proof of Assertion (ii) in Theorem[2.1} Let (Gq, (-, -)) be a half conformally flat
Lie group given by Lemma [2.13}-(i) (see also Theorem [I.30). Following [47], let
{e*} denote the dual basis of {e;} so that the structure equations are given by

de* =0, de! = el Net +ae? Ae?,
(2.29)
d62:_ael/\e4+62/\e4, ded =2e3 Net —el Ne2.

Integrating the expressions above gives coordinates (z,y, z,t) on R* where (see [47])
et = e7!(dx + aydt), €?=e7l(dy — axdt),
e = —e ! (dz + §(xdy — ydz) — Ja(z? +y?)dt), et =dt,

so that the metric expresses as

Jo = e 2 (dz + aydt)? + e 2 (dy — axdt)?

(2.30)

+ e (dz + 3(zdy — ydz) — Ja(z? + y?)dt)? + di*.
Now, a straightforward calculation shows that the conformal metric g, = e3g, is
Ricci-flat, and thus (G4, (-, -)) is conformally Einstein. This proves Assertion (ii)
in Theorem 2.11 O

Proof of Assertion (iii) in Theorem[2.1} Let (gq, (-, - )a) be a Lie algebra given by
Lemma[2.14}(ii), and set

les,e1] = €1, [es,ea] = (@ +1)%es, ey, 3] = a’es, a>0,

where {e1, ..., e4} is an orthonormal basis.

Considering the homothetic metric (-, - ) = 6(a? + a + 1)2(-, - )4, the Ricci
operator of (-, - )* and the self-dual and anti-self-dual Weyl curvature operators take
the forms

Ric, = —m diag[1, (a 4+ 1)2, a2, 0% + a + 1],
(2.31)
1 . _
Wi = % diaglar, —(a + 1), 1] = W,
when expressed in the (-, - ) -orthogonal basis {eq,...,e4} and the induced basis

of two-forms. Therefore W has three-distinct eigenvalues unless v = 1.

The necessary condition in Theorem [I.T4}(ii) to be conformally Einstein is also
sufficient in this case since by Equation the Weyl tensor has maximal rank.
Let T € g, be an arbitrary vector and set T = Tkej,. A straightforward cal-
culation shows that (divy W)(e;, ej,ex) — W(e;, €5, e, T) = 0 if and only if T =
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— m e4. This shows that left-invariant metrics given by Lemma (ii) are
conformally Einstein.

In the special case o = 1, one has that Ric = —% diag[1,4,1,3|, WHr =W~ =
2—17 diag[l, —2,1] and considering a new basis ; = %62, €y = ge1, €3 = %63,
€4 = ie4, the non-zero components of the Weyl tensor of type (1,3) are given by:

0 £ 00 0 0t1o
Wﬁ—%ooo .| 0 000
"l o ooof| " [-Loo0o0]

0 000 0 00 0

000 —1% 00 0 0
| 000 0 W_oo-io
““looo o " P ol o ol

100 0 00 0 0

0 0 00 00 0 0

0 0 0 3 00 0 0
Way = 8 Wiy =
"o o o0 " oo o !

1
0 -1 00 00 —% 0

Now, it follows from the work of Hall [[63]] that the left-invariant metric for & = 1 is
homothetic to left-invariant metrics in Lemma[2.14}-(i). Hence we assume « # 1.
Furthermore, replacing o by o' in Equation one has that e; +— e3 de-
fines an orientation reversing homothety between the left-invariant metrics (-, - ),
and (-, -),—1. We therefore may assume o > 1. Considering the homothetic met-

ric (-, - )%, a straightforward calculation shows that 7, = —1 and [po[® = 2.
. 2 4a?(a+1)?
Moreover, the norm of the Weyl tensor satisfies |[W,||* = W. Hence

two metrics (-, <)o and (-, -)g with a, 3 € (1,+00) are homothetic if and only
if a?(a +1)2(B2 4+ B+ 1)2 = B%(B+1)%(a® + a + 1), and thus o = f3.
O

2.9 Strictly Bach-flat four-dimensional Lie groups

The purpose of this section is to complete the proof of Theorem based on the
analysis in sections

Proof of Theorem[2.4] Let us consider the left-invariant metric on Rey x E(1,1)
given in Lemma [2.12] The Lie brackets are given, with respect to an orthonormal
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basis {e1,...,e4}, by
le1,e3] = (2+ V3)ea,  [ez,e3] = en,
[ea, e1] = V6 +3v3er, [es,ea] = V6 +3V3ez.

Now, an explicit calculation shows that the Ricci operator, in the basis {e1, ..., e4},
takes the form Ric = —(2 + /3) diag[6 4+ v/3,6 — V/3, 3, 6].
Let {Ef} be the corresponding orthonormal basis of self-dual and anti-self-dual

two-forms given by Ef = % (elne?tednet), B = % (el nedFe? net),

and E3i = % (61 AetEe? A 63). Then, the self-dual and anti-self-dual Weyl cur-

vature operators are given by

Wt = 258 diag[2, —1 — 3v2 — V3,1 + 3v2 + V3],
W~ = 255 diag2, -1+ 3v2 — V3, -1 — 3v2 + V3]

Finally, observe that the metric in Lemma [2.12]is not conformally Einstein. In-
deed, considering the corresponding left-invariant metric (-, -), a straightforward cal-
culation shows that, for any vector T € g, the necessary condition in Theorem[I.14}-
(ii) gives

3
(diva W)(e1, e2,e3) — W(e1,e2,e3,T) = 5(5 +3V3) £0,

and thus (G, (-, -)) is strictly Bach-flat.

Consider the left-invariant metrics on Rey x H3 at Lemma (i1). The Lie
brackets are given, with respect to an orthonormal basis {e1, ..., e4}, by

[e1, e2] = e3, les, ea] = 3o5es,
lea, e1] = TV 7 —3V5er, ez, eq] = 3V 7+ 3V5es.

Now, a explicit calculation shows that the Ricci operator, in the basis {e1, ..., e4},
takes the form Ric = —% diag[3 — /5,3 + /5, 2, 4], and the self-dual and anti-self-
dual Weyl curvature operators are given by

W+ = —Ldiag[2 + V10,1 — /7 +3v5, —1 + /7 — 3V/5],
W~ = —¢diag[2 — V10, -1 + V7 +3v5, -1 — V7 —3V5].

In order to show that the left-invariant metrics in Lemma [2.13}-(ii) are strictly
Bach-flat, we consider the necessary condition in Theorem [I.14}-(ii) to be confor-
mally Einstein. Let T € g be an arbitrary vector and set T = ), T*ej. Then one
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2.10 Bach-flat homogeneous Ricci solitons

has
(divg W)(eq, ea,e3) — W (e, ea,e3,T) = %(3 +2¢/10T%),
(divg W)(e1,eq,e1) — W(er,eq,e1,T) = —%(3\/3 — /5 4 4T*),
which are not compatible and thus the Lie group is strictly Bach-flat. O

2.10 Bach-flat homogeneous Ricci solitons

Recall from Section [1.8]that Ricci solitons are self-similar solutions of the Ricci flow
%g(t) = —2py(y), i.€., they are fixed points of the flow up to diffeomorphisms and
rescaling. On a Lie group one may consider a stronger condition and search for fixed
points of the flow up to automorphisms of the Lie group instead of diffeomorphisms.
This observation led Lauret [[76] to introduce algebraic Ricci solitons as follows. Let
G be a Lie group with Lie algebra g. A left-invariant metric (-, -) on G is called an
algebraic Ricci soliton if

® = Ric—-AId (2.32)

is a derivation of the Lie algebra, i.e., D[X, Y] = [DX, Y]+ [X,DY]forall X, Y €
g, where Ric denotes the Ricci operator (Ric(X),Y) = p(X,Y)and A € R. Let®
be a derivation given by Equation and let ; denote the one-parameter family
of automorphisms determined by dy;|. = exp %@ Then the vector field X given
by X(p) = %cpt (p)|t=0 satisfies Equation [(1.24)] thus defining a Ricci soliton on
G. It is important to recognize that both Equations [(1.24)|and [(2.32)] are invariant by
homotheties. Hence, aimed to characterize Bach-flat homogeneous Ricci solitons we
shall work modulo homotheties.

Let Axu = Au — g(X, Vu) be the X-Laplacian on a Ricci soliton structure
(M, g, X) (see for example [37]). Then 3Ax7 = At — || Ric |2, which shows that
a steady Ricci soliton (A = 0) with constant scalar curvature is Ricci-flat, and hence
flat in the homogeneous setting (see [3]] and [98] for an extension to the locally ho-
mogeneous setting). Furthermore, four-dimensional homogeneous shrinking Ricci
solitons have bounded curvature and thus they are gradient [84]. Hence, (M, g) is
rigid, i.e., it splits as a product N x R¥ where N is Einstein and the potential func-
tion is given by the projection into the Euclidean factor [93]]. Every homogeneous
expanding Ricci soliton is necessarily non-compact, and all known non-gradient ex-
amples are algebraic Ricci solitons on manifolds isometric to solvable Lie groups
with left-invariant metrics [67]].

The following result describes all homogeneous Bach-flat Ricci solitons.

Theorem 2.16. Let (M, g) be a four-dimensional complete and simply connected
Bach-flat Riemannian homogeneous Ricci soliton. Then (M, g) is Einstein, a locally
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conformally flat gradient Ricci soliton N3(c) x R, where N3(c) is a space form, or
homothetic to one of the algebraic Ricci solitons determined by the following solvable
Lie algebras:

(i) The Lie algebra g, = Rey x t3 given by
lea,e1] = €1, [es,e2] = Teo + aes, [es, €3] = —aes + tes.
(ii) The Lie algebra g, = Rey X 3 given b
8 g 8 y
lea,er] = e, [ea,en] = (a+1)% ez, [ea,e3] = a3, a>1.
(iii) The Lie algebra g = Rey x b3 given by
le1, ea] = e3, leq,e1] = 3V 7 —3V5ey,

le2,ea] = 1VT+3VBes, e, ea] = 35 es.

Proof. Let (M, g) be a homogeneous Ricci soliton, i.e., Lxg + p = Ag. If A = 0,
then (M, g) is flat. Moreover, if A > 0, then X is the gradient of a potential function
and one has Hesy +p = Ag. Homogeneity now means that either f is constant or
otherwise V f is a parallel vector field [93]]. Hence (M, g) is Einstein or it splits as a
product N x R¥ where N is Einstein. Since dim(NN) < 3, it is of constant sectional
curvature and thus N x R” is locally symmetric. Now Lemma shows that (M, g)
is Bach-flat if and only if it is either Einstein or M = N3(c) x R. Next we consider
the expanding case (A < 0).

First of all observe that all the homogeneous Bach-flat metrics in Theorem [2.]
and Theorem [2.4] are realized on solvable Lie groups. It was shown by Jablonski [68]]
that if a solvmanifold is a Ricci soliton, then it is isometric to a solvsoliton. Hence in
what follows we examine the existence of solutions to Equation [(2.32)| within the Lie
algebras in Theorem [2.1]and Theorem [2.4]

A straightforward calculation shows that half conformally flat Lie groups in The-
orem [2.1-(ii) are not algebraic Ricci solitons. Indeed, if © = Ric —A1d is a deriva-
tion then A should satisfy the equations A + 6 = 0 and A + % = 0 which are incom-
patible.

Let g, be a Lie algebra as in Theorem [2.1}-(i). Then a straightforward calculation
shows that ® = Ric —I—% Id is a derivation and thus it defines an algebraic Ricci soli-
ton. Analogously, Lie algebras g, in Theorem [2.1}-(iii) are algebraic Ricci solitons,
just considering the derivation ® = Ric +2(a? + a + 1)?1d.

The Lie algebra corresponding to Theorem [2.4}-(i) is not an algebraic Ricci soli-
ton since \ should satisfy the incompatible equations A—+/3 = 0 and A+12+7/3 =
0. On the contrary the Lie algebra g = Rey x h3 given at Theorem [2.4}-(ii) is an al-
gebraic Ricci soliton, with ® = Ric +% Id. O
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Chapter 3
Conformally Einstein non-reductive

homogeneous manifolds

The purpose of this chapter is to analyze the conformally Einstein equation for a
class of strictly pseudo-Riemannian four-dimensional homogeneous spaces, namely
the non-reductive ones. We determine explicitly which non-reductive homogeneous
four-manifolds are conformally Einstein and give all the possible conformally Ein-
stein metrics in each case. It is worth remarking that all Einstein metrics inside each
conformal class are Ricci-flat and, moreover, they are not unique depending on the
cases, allowing the existence of two-parameter and three-parameter families of Ricci-
flat conformal metrics in some cases.

It is important to emphasize that although any locally conformally Einstein metric
is Bach-flat, there are examples of strictly Bach-flat manifolds, i.e., which are neither
half conformally flat nor locally conformally Einstein (see for example [[1,33}78] and
the references therein). In this chapter we report on work investigated in [32]. Now,
our main result can be stated as follows.

Theorem 3.1. Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:

(i) (R*, g) with metric given by
g = (4b(z?)? + a) dz' o dzt + 4bx? dx! o da?
— (4az?z* — 4cx® 4 a) dat o da® + dax? dx' o dxt
+ bdz? o do? — 2(ax* — ¢) dx? o d2® + 2a dz? o da,
where a, b and c are arbitrary constants with ab # 0.
(ii) (R*, g) with metric given by
g = (4b(z%)? + a) dx' o dzt + 4bx? dx! o dz?
— (4ax’z* — 4ca® + a) dat o dz® + 4ax® da! o da?
+bdz? o dz?—2(ax* — ¢) dz? o dad+2a dz? o dz* — 3¢ da? o da?,

where a, b and c are arbitrary constants with ab # 0.
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(iii) (R*, g) with metric given by
g= —2ae2*" dzl o dz3 + ae?®' dz? o da?
+ bda® o dad 4 2¢dax® o dz* + g dx* o da?,

where a, b, c and q are arbitrary constants with abq # 0.
(iv) (U C R, g}) with metric given by
g+ = 20’ da' o dz* + ae*’ cos(xt)2da? o da?
+bdx? o dx® + 2¢da® o dz* + g dx* o da?,

where 4 = {(z',...,2%) € R* / cos(z*) # 0}, and a, b, c and q are arbitrary
constants with ab # 0 and b # —q, or

(R*, g_) with metric given by
g- = 2ae*’ dz' o da* + ae®’ cosh(x*)2da? o da?
+bdx? o dx® + 2cda® o dz* + g dx? o da?,
where a, b, c and q are arbitrary constants with ab # 0 and b # q.

Moreover, all the cases (i)—(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

This chapter is organized as follows. The classification of the non-reductive four-
dimensional homogeneous spaces given in [54]] and the local form of the metrics
corresponding to the different classes obtained in [25]] are briefly reviewed in Sec-
tion [3.1] The classification of all Bach-flat non-reductive four-dimensional homoge-
neous spaces is given in Theorem [3.9] The conformally Einstein equation is treated
in Section [3.3|where Theorem [3.1]is stated, classifying the conformally Einstein non-
reductive four-dimensional homogeneous spaces. All the curvature calculations are
carried out in Section[3.2] while the proof of Theorem [3.1]is given in Section[3.3]

3.1 Classification of four-dimensional non-reductive homo-
geneous manifolds

We recall that a pseudo-Riemannian manifold is homogeneous if there is a group of
isometries which acts transitively on M. Let G be such a group of isometries and let
H denote the isotropy group at some fixed point. Then (M, g) can be identified with
the quotient space (G/H, g), where § is an invariant metric on G. A homogeneous
space G/ H is said to be reductive if the associated Lie algebra admits a decomposi-
tion of the form g = b & m where m is an Ad(H )-invariant complement of . While
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

every Riemannian homogeneous space is reductive, there are pseudo-Riemannian ho-
mogeneous spaces without any reductive decomposition. The geometry of reductive
pseudo-Riemannian manifolds presents some similarities with the Riemannian case
(see for example [57])), but little is known about the non-reductive case. The geome-
try of non-reductive homogeneous spaces is therefore an important aspect towards a
good understanding of pseudo-Riemannian homogeneous manifolds.

Recall that any homogeneous pseudo-Riemannian manifold is reductive in di-
mension two and three. So the first non-trivial examples appear in dimension four.
Both Lorentzian and neutral signature examples may occur. In dimension four, a
complete classification of non-reductive homogeneous spaces was obtained in [|54]]
(see Section [3.1.T)). Later on a coordinate description was given in [25] which we
recall in order to state our results.

3.1.1 Classification of Fels and Renner

We consider M = GG/ H and denote by (g, h) the pair of Lie algebras corresponding
to G and H, respectively. The Lie algebras in dimension < 4 were classified in [91]).
Following the same notation we introduce the relevant Lie algebras for our purpose.

° A}LQ is the solvable Lie algebra determined by:
[ea,e3] = e1, [e1,eq] =2e1, [ea,eq] =ea, [e3,e4] =e3.
o As 3 is the solvable Lie algebra determined by:
[ea,e4] = €1, [es, eq] = ea, le1,e5] = (a+ 1)eq,
[e2, e5] = aea, les,e5] = (v —1)es, [eq,e5] = ey,
with o € R.
o As 36 is the solvable Lie algebra determined by:
[e2,e3] =e1, [er,eq] =e1, [ea,e4] = eg,
[e2, e5] = —e2, [es,e5] =e3.
e Ajs 37 is the solvable Lie algebra determined by:
[e2,e3] = €1, [e1,eq] =2e1, [e2,e4] = ez,
es,eq] = €3, [e2,e5] = —e3, [e3,e5] =e2.
Now, we provide a classification when the signature is Lorentzian.

Theorem 3.2. [54]| Let (M = G/H, g) be a four-dimensional homogeneous Lorentz-
ian manifold, where H is connected. If M is non-reductive then the pair (g,bh) is
isomorphic to one of the following:
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(A.1)

(A.2)

(A.3)

The Lie algebra g is the 5-dimensional Lie algebra s1(2,R) @ s(2), where 5(2)
is the 2-dimensional solvable Lie algebra. There is a basis {e1,...,e5} such
that g is determined by:

[e1,e2] = 2e2, [e1,e3] = —2e3, [e2,e3] =e1, [es,e5] =eq4.
The subalgebras are given by ) = span{h; = e3 + e4} and m = span{u; =
e1,Us = €g,U3 = e5,uq = e3 — e4}. With respect to the basis {0, ... 6%},
dual to {uy, ..., us}, we have the description of the left-invariant metric:

g=a(0'0ft —0 0B +26%00") +b6%00% +2c6%0 0% +q03063, (3.1)

where a(a — 4q) # 0.

The Lie algebra g is the 1-parameter family of 5-dimensional solvable Lie al-
gebras As 30. There is a basis {e1, ..., es5} such that g is determined by:
le1,e5] = (a+1)e1, [e2,eq] = e, e, e5] = e,
e, e4] = e, les,e5] = (v —1)es, [eq, e5] = ea,

where o« € R. The subalgebras are given by ) = span{h; = e4} and
m = span{u; = e1,uy = ey, uz = ez, uq = es}. With respect to the basis
{0Y,...,0%}, dualto {uy,...,uy}, we have the description of the left-invariant
metric:

g=a(—=20" 0 +60%00*)+00%0 0> +2c0°0 0 +q0 0 0*, (3.2)
where aq # 0.
The Lie algebra g is one of the 5-dimensional Lie algebras As 37, As 36. There
is a basis {e1, ..., e5} such that g is determined by:

[617 64] = 2ey, [627 63] = €1, [627 64] = €2,

le2,e5] = —ce3, [e3,eq] =e3, [e3,e5] = ea,

with ¢ = 1 for As 37 and € = —1 for As 36. The subalgebras are given by b =
span{h; = e3} and m = span{u; = ej,us = eg,ug = eq,uq = e5}. With
respect to the basis {01, ...,0%}, dual to {uy, ..., us}, we have the description
of the left-invariant metric:

g=a(20" 00" +60%00%) +b0% 060> +2c0% 00 +q0 00t  (33)

where ab # 0.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

(A.4)

(A.5)

The Lie algebra g is the 6-dimensional Lie algebra of Schridinger s((2,R) x
n(3), where n(3) is the 3-dimensional Lie algebra of Heisenberg. There is a

basis {e1, ..., es} such that g is determined by:
e1,€2] = 2e2, [e1,e3] = —2e3, [ez,e3] = €1, [e1,eq] = ey,
[615 65] = —é€x5, [62) 65] = €4, [63) 64] = €5, [645 65] = €6 .

The subalgebras are given by ) = span{h; = e3 + eg,ho = €5} and m =
span{u; = ej,uy = eg,uz = e3 — eg,ug = eyq}. With respect to the basis

{6Y,...,0%), dualto {uy, ..., uy}, we have the description of the left-invariant
metric: ]
g:a(91091+202093+§94064)+b92062, (3.4)
where a # 0.
The Lie algebra g is the 7-dimensional Lie algebra s1(2,R) x A};,g- There is a
basis {e1, ...,er} such that g is determined by:
[ela 62] - 2627 [617 63] - _2637 [617 65] = —€x5, [617 66] = €g,
[e2,e3] = €1, [ea, e5] = es, s, e6] = €5, [ea, e7] = 2e4,
5, e6] = €4, [es,e7] = es, e, e7] = €6 .

The subalgebras are given by h = span{h; = e; +e7,hy = e3 —eq, hs = e5}
and m = span{u; = e; — e7,uy = e, u3 = e3 + eq,uy = eg}. With respect
to the basis {0, . ..,0%}, dual to {u1, ... ,us}, we have the description of the
left-invariant metric:

1 1
g:a(el091+§02093+§94094), (3.5

where a # 0.

The following theorem gives a list when the signature of the manifold is (2, 2).

Theorem 3.3. [54] Let (M = G/H,g) be a homogeneous pseudo-Riemannian
manifold of dimension four and signature (2,2), where H is connected. If M is
non-reductive then the pair (g, 1) is isomorphic to one of the following:

(A.1)
(B.1)

— (A.3) The corresponding pairs of Lie algebras in Theorem|3.2]

The Lie algebra g is the 5-dimensional Lie algebra s1(2,R) x R2. There is a
basis {e1, ..., es} such that g is determined by:

[e1,e2] = 2e2, [e1,e3] = —2e2, [e2,e3] =e1, [e1,e4] = ey,

[e1,e5] = —e5, [ea, e5] = eu, [e3,e4] = e5.
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(B.2)

(B.3)

The subalgebras are given by ) = span{h; = e3} and m = span{u; =
e1,us = ez, u3 = e4,uq = e5}. With respect to the basis {0*, ..., 0%}, dual to
{u1,...,us}, we have the description of the left-invariant metric:

g=2a(0' 00> +60%00") +16%06%4+2c0%00° +q6% 063, (3.6)
where a # 0.

The Lie algebra g is the 6-dimensional Lie algebra of Schridinger s((2,R) x
n(3) as in (A.4) of Theorem [3.2] with the subalgebras b = span{h; = e3 —
€6, ho = e5} and m = span{u; = ey, uy = eg,us = e3 + eg,ug = eq}. With
respect to the basis {01, ... 0%}, dual to {uy, . . .,uy}, we have the description
of the left-invariant metric:

gza(—&l091+292093+%94094)+692002, (3.7)
where a # 0.
The Lie algebra g is the 7-dimensional Lie algebra sl(2,R) x R? @ R. There
is a basis {e1, ..., er} such that g is determined by:
le1,ea] = 2eq2, [e1,e3] = —2e3, [ea,e3] =e1, [e1,eq] = ey,
le1,e5] = —es5, [e2,e5] = ey, [es,eq] = e5.

The subalgebras are given by ) = span{h; = e3,hy = e5 + e} and m =

span{u; = ej,us = ez, uz = es,uy = eq}. With respect to the basis
{0%,...,0%), dualto {uy, ..., us}, we have the description of the left-invariant
metric:

g=2a(0' 00®+6206%) +06%0 03, (3.8)
where a # 0.

The following theorem gives a complete classification when the space is simply
connected.

Theorem 3.4. [54] If (M = G/H,g) is a four-dimensional homogeneous simply
connected and non-reductive pseudo-Riemannian manifold, then:

(i)
(ii)

M is diffeomorphic to R*,

If G is the complete group of isometries then the pair of Lie algebras for G/ H
is equivalent to one of the cases in Theorem[3.2]excluding the case (A.5), or to
one of the cases in Theorem[3.3]
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

Conversely, for any pair of Lie algebras in Theorem [3.2] excluding the case (A.5), or
for any pair of Lie algebras in Theorem[3.3} there is a pseudo-Riemannian metric in
R* (subject to the signature conditions), where the group of isometries acts transi-
tively on R*. The Lie algebra of the symmetry group is given by the Lie algebra g
and the Lie algebra of the isotropy group at a point is given by .

3.1.2 Description in coordinates

Calvaruso, Fino and Zaeim established the following coordinate description, which
will be used in what follows:

Theorem 3.5. [25] Let (M, g) be a non-reductive homogeneous pseudo-Riemannian
manifold of dimension four. Then it is locally isometric to one of the following:

(A.1) R* with coordinates (z*, 2%, 2, z*) and metric tensor
g = (4b(z%)? + a) dz' o dzt + 4bx? dx' o dz?
— (4ax’z* — 4ca® + a) da' o da? + 4ax? dx! o da?
+ bdx? o dr?® —2(az* — ¢) dx? o dx3+2a dx? o dx* 4 qda? o da?,

where a, b, c and q are arbitrary constants with a(a — 4q) # 0.

(A.2) R* with coordinates (x*, 2,23, 2*) and metric tensor

g= —2ae?" dzl o dad + ae?® da? o da? + be2(@ V7" 33 o a3
+ 2cel@= D" 423 o dat + g da? o dat,

where a, b, ¢, ¢ and « are arbitrary constants with aq # 0.

(A.3) An open subset s C R* with coordinates (x', 22, 23, x*) and metric tensor

g+ = 2ae*”’ da' o dz? + ae*’ cos(xt)2da? o da?
+ bda® o da® + 2¢da® o da* + g dz? o da?,

where a, b, ¢ and q are arbitrary constants with ab # 0 and the open set
U= {(zt, 22,23, 2%) € R*; cos(x?) # 0}, or

g- = 2ae*’ dz' o dz* + ae*’ cosh(x*)2da? o da?
+ bda® o da® + 2¢da® o da* + qdz? o da?,

where a, b, ¢ and q are arbitrary constants with ab # 0 and 3\ = R4,
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(A.4) R* with coordinates (z*, 2, 23, 2*) and metric tensor

g=(%(z)? +4b(z*)* + a) dz' o dz' + 4baz*dz! o da?
+az?(4 4 (z4)?)dz! o dz3+a(1 + 2222%)2*dr! o dx* +bdz? o da?
+ 2(4 + (z*)?)da? o da® + axdztdz? o dat + & dat o da?,

where a and b are arbitrary constants with a # 0.

(A.5) (R?\ {(0,0)}) x R? with coordinates (', %, 3, z*) and metric tensor

g=— 4x2dx odz? + ¢ dz' o da? +%dw20dfc2

S dx? o dxd — %dazQ odz* + %d$3 odx?,

4:172

where a # 0 is an arbitrary constant.

(B.1) R* with coordinates (x', 2%, 23, x*) and metric tensor
g = (gl + 4220t + 4222 (a")?)
+dcx?z® + 8c(z?)?a?t + 2ax® + 4b(2?)?) dzt o da'!
+2(q(x3z* + 22%(2*)?) + dex2t + cxd + 2b2?)dat o da?
+ 2(q(a® + 22%2*) + 2c2? + a)dz! o da® + 4ax?dx’ o da?
+ (q(2%)? + 2c2* + b)dx? o da® + 2(qx* + ¢)dz? o da3
+2a dx? o da* + g da3 o da?,

where a, b, c and q are arbitrary constants with a # 0.

(B.2) 4 = {(zt, 22,23, 2%) € R 2* # 42} with coordinates (x*, 22, 23, 2*) and
metric tensor

g= (a - CL(:ETAL)Q + 4b(m2)2> dzt o dr! + 4bz?dx! o da?
—ax?((2%)? — 4)da! o dx®—a(1 + 22%23)2xtdzt o dot+bda? o da?
— 2a((z")? — 4)dz? o dz® — azdxda? o dat — Jada? o da?,

where a and b are arbitrary constants with a # 0.

(B.3) R* with coordinates (x', 2%, 23, x*) and metric tensor
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

g = —2ae~ " 23dz"! o da? + 2ae~* dz! o dx
+ 2(2b(23)? — az*)dx? o dz? — 4bx3dz? o da®
+ 2a dx? o dx* + bda3 o da3,

where a and b are arbitrary constants with a # 0.

It is worth emphasizing that the spaces of Types (A.1)—(A.3) admit metrics both
of Lorentzian and neutral signature depending on the values of the constants defin-
ing the corresponding metrics. Metrics of Type (A.4) and Type (A.5) are always
Lorentzian, while metrics of Types (B.1)—(B.3) are of neutral signature (2, 2).

3.1.3 Ricci tensor and Weyl curvature tensor of non-reductive four-di-
mensional homogeneous manifolds

We describe the curvature of non-reductive four-dimensional homogeneous mani-
folds analyzing the Ricci tensor and the Weyl curvature tensor case by case. As a
consequence we obtain Theorem and Theorem [3.8] We consider separately all
the possibilities in Theorem [3.3]

Type (A.1)
Consider the metric tensor
g = (4b(z*)? + a) dx! o dz' + 4bx? dx' o da?
— (4ax?x* — 4cx?® + a) dot o dz® + daz? dxt o dx?

+ bda? o dr? — 2(azx* — ¢) dx? o da® + 2a dx? o dz* + qda3 o da?.

(3.9

It immediately follows from the above expression that det(g) = +a3(a — 4¢), which
shows that the metric is Lorentzian if a(a — 4¢) < 0 and of neutral signature
otherwise. Further observe that the restriction a(a — 4q) # 0 in Theorem (A. 1)
ensures that g is non-degenerate.

The Ricci operator is given by

-2 0 1 0
1 0 —2 -2z 0
Ric = p 0 0 0 0 , (3.10)
8b(a+4q)x?  4b(at+dq)  2(azt—c) 9
a(a—4q) a(a—4q) a
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showing that the manifold is never Einstein for any a,b,c,q € R. The non-zero
components of the Weyl tensor are (up to the usual symmetries):

— 2
Wi212 = Sf_f;b, Wio13 = *lf%f; ; Wigas = *ff%, Gl
_ 8bg(x?)?(a+4q) _ 4bgx?(a+4q) _ 2bg(at+4q) )
Wizis = == nzag o Wises = — g > Weses = —uoag) -
Note that if b = 0 then the manifold is locally conformally flat.
Type (A.2)
Consider the metric tensor
g= —2ae20%" 4zl o dad + ae?® dz? o da? + be2(@= Dz 4g3 o dg3
3.12)
+ 2cel@ V7" 443 o dgt + gdx* o dx*.
It immediately follows from the above expression that det(g) = —a®q %", which

shows that the metric is Lorentzian if ag > 0 and of neutral signature other-
wise. Further observe that the restriction ag # 0 in Theorem [3.51-(A.2) ensures that
g is non-degenerate.

The Ricci operator is given by

10 b(gja—f) o2z 0
3a? 1
Ric = —22 | 0 0 0 (3.13)
q 00 1 0
00 0 1
Hence (M, g) is Einstein if and only if b = 0 (with scalar curvature 7 = —12%2),
or o = % (with scalar curvature 7 = _£)’ or Ricci-flat if « = 0. The non-zero
components of the Weyl tensor are given by
— Nab 2(2a—1)z* 1
Wagasz = — (o = 2abe ; Wiaza = (o — 2)be2@~ D" (3.14)

2q 2

Note that if & = 2 or b = 0 then the manifold is locally conformally flat.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let L[ be the open
set in R* determined by 8 = {(z!, 22, 23, 2%) € R*;cos(z*) # 0} and the metric
tensor , ,
g+ = 2ae*™" dz' o dz* + ae®*” cos(x?)?dx? o dx? (3.15)
+bdad o dad + 2¢dx® o da* + gdx* o da? . '
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

Now det(g;) = —a3bcos(x*)? e8*” shows that the metric [(3.13)] is Lorentzian if
ab > 0 and of neutral signature otherwise. Further observe that the restriction ab # 0
in Theorem [3.5]-(A.3) ensures that g is non-degenerate.

The Ricci operator is given by

10 0 U™
3
Ric=->| 0 1 0 0 , (3.16)
bl o o1 0
0 00 1
and thus (M, g) is Einstein if and only if b = —¢. The non-zero components of the
Weyl tensor are:
ae2e’ b+ q) cos (z* 2 b+
Wans = 2 22 C) W= . eI

Now we consider the second case for Type (A.3) metrics. Let M be R* with
metric tensor

g- = 2ae*’ dz' o dz* + ae*’ cosh(x*)2da? o da? 3.18)
+bda? o da® + 2cda® o dz* + qda? o da? . .
Next det(g_) = —a®bcosh(z*)2 €57* shows that the metric [(3.18)] is Lorentzian if

ab > 0 and of neutral signature otherwise. Further observe that the restriction ab # 0
in Theorem [3.5}-(A.3) ensures that g_ is non-degenerate.
The Ricci operator is given by

100 G=oe™
Ric— o[ 0 10 0 , (3.19)
bl o o1 0
00 0 1

and thus (M, g) is Einstein if and only if b = ¢ in which case the manifold is locally
conformally flat. The non-vanishing components of the Weyl tensor are:

23 4\2
ae“™ (b — q) cosh (x b—
( ) ( ) W3434 = -1

2
% ; 2 (3.20)

Wasos4 = —
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Non-reductive homogeneous manifolds

Type (A4)
Consider the metric tensor

g = (&(2")? + 4b(22)? + @) da' o dx" + 4badz" o da?
+ az?(4 + (z1)?)dx! o daz® + a(1 + 22%23)2xtdx! o da?

3.21)
+ bda? o dz® + §(4 4 (2*)?)da? o da?
+ ardzida? o dz* + & da? o dx?
It follows from the above expression that det(g) = —z5a*(4+ (2*)?)2, which shows

that the metric is Lorentzian. Further observe that the restriction a # 0 in
Theorem [3.5-(A.4) ensures that g is non-degenerate.
The Ricci operator is given by

1 0 0 0
) 3 0 1 0 0
Ric = “a 40ba2 200 10 | (3.22)
3a((z*)%2+4) 3a((z*)%2+4)
0 0 01

which shows that (M, g) is Einstein if and only if b = 0 in which case the manifold
is of constant sectional curvature taking into account that the non-zero components
of the Weyl tensor are given by

W1212 = %b ((33‘4)2 - 2) ) W1214 = 3b 25(34, W1224 = —M,

2

(3.23)
Wians = 3b(2?)?, Wiag = 382, Wosoq = 3.

Type (A.5)

Let M = (R%\ {(0,0)}) x R? and let (2!, 2%, 23, 2*) be the coordinates. Consider
the metric tensor

g=—- 412d$ o dx? + 4 da! o da* —i—%ﬁ#‘r))dw o dx?
(3.24)
— i > da? o da® 12 dz? o dz* + g dx?® o da .
Since det(g) = —W, the metric[(3.24)|is Lorentzian and the restriction a # 0
in Theorem 3.5}-(A.5) ensures that g is non-degenerate.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

The Ricci tensor is given by

3zt 3
0 %7 0 -3
3zt _3(@0)*+2wlat42)  5u3 g1
p= 2x2 %(;‘32)2 2:1:; 2z2 , (3.25)
0 207 -3 0
3 32!
-3 922 U

from where it follows that the corresponding Ricci operator is a multiple of the iden-
tity, Ric = — % Id, and thus Einstein. Moreover, the Weyl tensor vanishes identically.
Therefore any Type (A.5) manifold has constant sectional curvature.

Type (B.1)

Let M = R* with coordinates (2!, 22, 23, 2*) and metric tensor

g = (q((z)* + 4?32 + 4(2?)?(2*)?)
+4cx?z® + 8c(x?)?at + 2a2® + 4b(2?)?) da! o da!
+ 2(q(z32* + 22%(2*)?) + dex?x* + ca® + 2bx?)dx! o da?
+ 2(q(a® + 22%2*) + 2c2? + a)dx! o da® + 4ax?dx! o dx?
+ (q(z*)? + 2ca* + b)dx? o dx® + 2(qz* + ¢)dx? o da
+ 2adx? o da* + qda? o da? .

(3.26)

Since det(g) = a* and the component g44 = 0, the metric is of neutral
signature and the restriction @ # 0 in Theorem [3.5H(B.1) ensures that ¢ is non-
degenerate.

The Ricci operator is given by

24 0 0 0
0 3q 0 0
Ric = 2a 3¢ , (3.27)
0 0 200
Ba2bg—c?) 2bg—c?) 0 2%

from where it follows that (1M, g) is Einstein if and only if ¢* — bg = 0. The non-zero
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Non-reductive homogeneous manifolds

components of the Weyl tensor are given by

—6a2 (b+20x4 +q(x*)? ) +ax3 (77bq+6027q:1:4 (20+qx4))+5q(13)2 (02 7bq)

Wig12 = A |
Wio13 = 212(a(7bq_6‘32+qz4(20+q$4))Jjggmg(bq_CZ))—“(ﬁaJrqrs)(C+q14),

Wia14 = _2x2(6a+qx3)(C+‘iz4)+q$3(2a+qx3)’

W23 = a(7bq7662+qx4(261225”4))“0%3(@*02)7

Wigos = —w, Wioss = _‘1(2“:7;1“3)’

Wisiz = q(7a2+2”2(C+q9;2)2+20(x2)2(027bq))’ (3.28)
Wiz = me(—2a+2m22€;+qx4)+qx3)7

Wiggy = Selctar V02 (@ta)) g sle(etart)e)

Wiz = qu’ Wiazs = q(2x2(6+4q;4)+qx3)7 Wisgs = —qa?,

Wiaia = —2q(2%)?, Wagsy = %, Wasas = —4,

Wasos = Wa Wagos = q(cZZﬁ) :

Note thatif b =c = ¢ =0then W = 0.

Type (B.2)
Let 4 = {(z!, 22,23, 2%) € R 2* # £2} with coordinates (z!, 2%, 23, z%) and
metric tensor
g= (a — ﬁ + 4b(x2)2) dzt o dz' + 4bz?dx! o dx?
—az?((z*)? — 4)dz' o dz® — a(1 + 22%23)ztdx! o d2?
+ bda? o da? — La((z*)? — 4)da? o da®

— ardxtdx? o dat — %a dxt o dxt .

(3.29)

Since det(g) = g5a*((z*)? — 4)? and the component g33 = 0, the metric[(3.29)is of
neutral signature and the restriction a # 0, 2* # 42 in Theorem (B.2) ensures
that g is non-degenerate.
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3.1 Classification of four-dimensional non-reductive homogeneous manifolds

The Ricci operator is given by

| 0 0 0
.3 0 1 00
Ric = —- 40bz? 20b J (3.30)
| Tmere=n mehe—n 10
0 0 0 1

which shows that (M, g) is Einstein if and only if b = 0. In this case, the manifold
is locally conformally flat since the non-zero components of the Weyl tensor are
determined by

Wigtz = —3b ()2 +2), Wigws = Sba?z?, Wigpy = %, (3.31)
Wians = —3b(2?)?, Wigoa = =32 Wy = —2.
Note that W = 0 if and only if the manifold has constant sectional curvature.
Type (B.3)
Let M = R* with coordinates (2!, 2, 23, 2*) and metric tensor
g = —2ae~"" 23dz"' o da? + 2ae " dx! o dx
+ 2(2b(23)? — az*)dx? o dx? — 4bx3dz? o da3 (3.32)

+ 2adz? odx* + bdx3 o dx? .

Since det(g) = a*e~2* and the component g44 = 0, the metric [[3.32)]is of neutral
signature and the restriction @ # 0 in Theorem [3.5H(B.3) ensures that ¢ is non-
degenerate.

A straightforward calculation shows that the Ricci operator of any Type (B.3)
metric vanishes identically and hence they are all Ricci-flat. The Weyl tensor is not
necessarily zero and the only non-zero component of the Weyl tensor is given by

Wazaz = —3b, (3.33)

which shows that (M, g) is flat if and only if b = 0.

Remark 3.6. As a consequence of the expressions of the Ricci and the Weyl tensor
in this section, a metric given by Theorem [3.5]is of constant sectional curvature « if
and only if it corresponds to one of the following (see also [24}26,/54]):

2

Type (A.2) with b = 0, in which case k = —%.
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Non-reductive homogeneous manifolds

Type (A.3) with b = —eq, in which case kK = 5%.
Type (A.4) with b = 0, in which case kK = —%.

Type (A.5), in which case k = —%.
Type (B.1) with ¢ = ¢ = b = 0, in which case is flat.

1
e

Type (B.2) with b = 0, in which case Kk = —

Type (B.3) with b = 0, in which case is flat.

Fels and Renner [54] classified the Einstein non-reductive four-dimensional ho-

mogeneous spaces, showing that they must be of Type (A.2) or (B.3) (see also [24}
25,27]). The following theorem summarizes all the previous results.

Theorem 3.7. Let (M, g) be a manifold given by Theorem Then (M, g) is Ein-
stein if and only if it has constant sectional curvature or it corresponds to one of the
following:

(i) Type (A.2) with o = % and aq # 0:

g = —2ae3%" dat o dad + ae3™ da? o da? + be 5% dad o dz®

+ 2ce5%" dad o dat + qdz* o dz*.

(ii) Type (B.1) with q = ¢ = 0 # ba:

g = (2a2® + 4b(2?)?) da' o da! + 2(2b2?)dz’ o da?
+ 2adx! o dx® + 4axdx’t o det + bdx? o dz? + 2a dx? o dzt.

(iii) Type (B.1) withq # 0, b = g and a # 0:

g= (q((x3)2 + 4z 23zt + 4(2?)2(24)?)
+dcx?zd + 8c(z?)?xt + 2ax® + %(x2)2) dz! o dx?
+ 2(q(z32* + 222 (24)?) + dexa* + cad + %QTZ)dCCl o dz?
+2(q(x® + 22%2%) + 2c2? + a)dx! o da® + 4ax?dxt o dxt
+ (q(x*)? + 2ca* + %)dazz o dz?® + 2(qx* + ¢)dz? o da3
+ 2a dx? o dax* + g da3 o da3.

(iv) Type (B.3) with ab # 0:
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3.2 Bach-flat non-reductive homogeneous manifolds

g = —2ae~ " 23dz"! o da? + 2ae~* dz! o dx
+ 2(2b(23)? — az*)dx? o dz? — 4bx3dz? o da®
+ 2adx® o dz* + bdx3 o da®.
In all the cases, the manifold is of neutral signature.

Some generalizations of the Einstein condition were studied in [24]] and [26]
showing which of these manifolds admit Ricci solitons.

The main goal of this chapter is to study the conformal geometry of these spaces
aimed to describe all the conformally Einstein non-reductive homogeneous spaces.
Clearly the Einstein cases mentioned above as well as the locally conformally flat
cases already described in [27] should be discarded, since they all are conformally
Einstein.

Theorem 3.8. Let (M, g) be a manifold given by Theorem[3.5] Then (M, g) is locally
conformally flat if and only if it is of constant curvature or it corresponds to one of
the following cases:

(i) Type (A.1) withb = 0 and a(a — 4q) # 0:
g = adz' odx' — (4ax?x* — 4ca?® + a) dzt o da?
+ daz? dzt o do* — 2(ax* — ¢) d2? o da?
+ 2adx? o dx* + qda3 o da?.
(ii) Type (A.2) with o = 2 and abq # 0:
g = —2ae%®" dxl o dad + aet® da? o da? + be?® dx o da®

+ 2ce® dad o dat + gdx* o da*.

3.2 Bach-flat non-reductive homogeneous manifolds

In this section we briefly schedule some basic facts about the curvature of non-
reductive homogeneous spaces. All the curvature expressions are obtained after some
straightforward calculations that we omit. We consider separately all the possibilities
in Theorem [3.5] and analyze the Bach tensor case by case. As a consequence, one
obtains the proof of Theorem (3.9

3.2.1 Non-reductive spaces admitting Lorentzian and neutral signature
metrics

With the notation of Theorem [3.5]at hand, the non-reductive four-dimensional homo-
geneous manifolds admitting both Lorentzian and neutral signature metrics are those
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Non-reductive homogeneous manifolds

corresponding to Types (A.1), (A.2) and (A.3).

Type (A.1)
Consider the metric tensor
g = (4b(22)? + a) dx! o dzt + 4bx? dz' o da?
— (4axz* — 4c2?® + a) dz' o dz® + 4ax? dx! o dz* (3.34)
+bdz? o dx? — 2(ax* — ¢) da? o da® + 2a dx? o da* + qdx3 o da?,

where a(a —4q) # 0. The non-zero components of the divergence of the Weyl tensor
are given by (up to symmetries):

. 12bx2 (a+4q
d1V4 W121 == #,

a(a—4q)
divy Wigo = %7
2\2
divy Wigy = — 23000 (3.35)
. . 2
divy Wize = divy Wasy = —jfﬁi”;q,
divg Wagy = — azébzaq :
The Bach tensor is given by
256b q (3a+4q) (z2)? 128b g (3a+4q)z> 0 0
- a?(a—dg)? ~ a?(a—4g)?
_128bq (3a+4q) > __64bg (3a+4q) 0 0
B = a?(a—4q)* a?(a—4q)? (3.36)
0 0 00
0 0 00

An immediate consequence of previous expression is that a Type (A.1) non-
reductive homogeneous space is Bach-flat if and only if one of the following holds:
b=0,g=00rq= —%‘1. Moreover:

(1) If b = 0, then Equation|(3.11)|shows that (M, g) is locally conformally flat.
(2) Ifb # 0, then (M, g) is neither locally conformally flat nor Einstein.

Type (A.2)
Consider the metric tensor
g= —2ae?" dzl o dad + ae® da? o da? + beX(@ 1" 4g3 o da?

4 3.37)
+ 2¢el@ D% 423 o dat + g da? o da?,
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3.2 Bach-flat non-reductive homogeneous manifolds

where aq # 0. The only non-zero component of the divergence of the Weyl tensor is
given by

(. —2)(3ax — 2) be2(a—1)z*

5 (3.38)

divy W3z =
In this case the Bach tensor is expressed with respect to the coordinate basis as

0
0

(a—2)(a—1)(3a—2)be2(e=Dz"
q2

0

(3.39)

I
oo oo
o o oo
o o o o

Hence a non-reductive homogeneous space of Type (A.2) is Bach-flat if and only
ifb=0a= %, a =1ora = 2. Moreover:

(1) If b = 0 then Equations|(3.13)|and [(3.1%)| show that the manifold is of constant

. 2
sectional curvature kK = —

[
T
24
(2) If a = % then Wsysq4 = —%befQT and hence the manifold is not locally
conformally flat, unless b = 0.

(3) If a = 1then Wsy34 = —g, which shows that (M, g) is not locally conformally
flat unless b = 0.

(4) If « = 2, then Equation shows that (M, g) is locally conformally flat
but not Einstein unless b = 0.

Type (A.3)

Two distinct cases have to be considered for Type (A.3) metrics. Let il be the open
set in R* determined by {4 = {(z!, 22, 23, 2) € R*; cos(z?) # 0} and the metric
tensor

gy = 2ae¥’ dzt o da* + ae®™’ cos(zt)2dx? o da? (3.40)
+ bdx3 o dxd 4 2cda® o da* + g dx? o da?, .

where ab # 0. The only non-zero component of the divergence of the Weyl tensor is

b+gqg

diV4 W344 = %

(3.41)
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Non-reductive homogeneous manifolds

Now, a long but straightforward computation shows that (M, g ) is always Bach-
flat. Moreover, (M, g..) is locally conformally flat if and only if b = —q by Equa-
tion [(3.17)] in which case it is Einstein and thus of constant sectional curvature
K=

Q=

Now we consider the second case for Type (A.3) metrics. Let M be R* with
metric tensor
g- = 2ae*’ dz' o da* + ae®’ cosh(x*)2dz? o da?

3 3 3 4 4 4 (3.42)
+ bdx® odx® + 2cdx® o dx* + q dx* o dx”,

where ab # 0. The only non-zero component of the divergence of the Weyl tensor is

) 1/q
diva Waas = 5 (g _ 1) . (3.43)

Furthermore, a long but straightforward computation shows that (M, g_) is always
Bach-flat. Moreover, (M, g_) is locally conformally flat if and only if b = q by
Equation|(3.20)} in which case it is Einstein and thus of constant sectional curvature
1
K= —=
Hence any Einstein Type (A.3) manifold is necessarily of constant sectional cur-
vature.

3.2.2 Non-reductive spaces admitting only Lorentzian metrics
Type (A.4)
Consider the metric tensor
g = (%(z*)? + 4b(2?)* + a) dz' o dz' + 4ba?dz’ o da?
+ az?(4 + (2*)?)dz! o da® + a(1 + 22223)2x*dx! o do* + bdz? o dx®  (3.44)
+ 2(4 + (2*)?)da? o da® + axdztdz? o da + & dat o da?,

where a # 0. The only non-zero components of the divergence of the Weyl tensor
are given by

15bz? 15b
divy Wiay = — ax o diva W = - (3.45)

The Bach tensor is given by

_120b(z%)?  60bx?

_ 60ba? 306
B — 2 2 00 (3.46)
0 0 00
0 0 00
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3.2 Bach-flat non-reductive homogeneous manifolds

Hence, a Type (A.4) metric is Bach-flat if and only if b = 0, in which case (M, g) is
locally conformally flat by Equation and thus of constant sectional curvature
K= —é, as the Ricci operator shows.

Type (A.5)

Let M = (R?\ {(0,0)}) x R? and let (x!, 2%, 23, 2*) be the coordinates. Consider
the metric tensor

g= —%d:pl oda? + %¢dzt odat + —a(2+2§25;;($3)2)dx2 o dx? (3.47)

_az® 5.2 3 _ axt 2 4 a 3 3
md"]}' de mdﬂf de +§d$ Odﬂf,

where a # 0. In this case, the manifold is Einstein and the Weyl tensor vanishes

identically. Therefore, any Type (A.S5) metric is always of constant sectional curva-

—_4
ture kK = o

3.2.3 Non-reductive spaces admitting only neutral signature metrics.

There exist three different families of non-reductive homogeneous four-manifolds
which admit exclusively neutral signature metrics.

Type (B.1)

Let M = R* with coordinates (2!, 22, 23, 2*) and metric tensor

g = (g((@®)? + 422050 + 4(2?)2(24)?)
+4cx?z® + 8c(a?)?at + 2aa® + 4b(2?)?) da! o da!
+ 2(q(z32* + 22%(2*)?) + dex?a* + ca® + 2bx?)dx! o da? (3.48)
+ 2(q(a® + 22%2*) + 2c2? + a)dx! o da® + 4ax?dx! o dx?
+ (q(2*)? + 2ca* + b)dx? o dx® + 2(qx* + ¢)dz? o da

+ 2a.dx® o dax* + qda® o da?,
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Non-reductive homogeneous manifolds

where a # 0. In this case, the non-zero components of the divergence of the Weyl
tensor are given by

1522 (6a—q333) (02 —bq)

divy Wig1 = —

4a3 )
] 2_
divg Wigo = — 15(Ge qga:?(c bq),
2_
diV4 W232 _ 15q(c bq) (349)

8a3 ’

divy Wig1 = 4(2%)? divy Wasa,
diV4 W132 = diV4 W231 = 21’2 diV4 W232 .

The Bach tensor is given by

24Oq(02—bq) (x2)? 120q(02—bq>x2
1

at a 0 0
120¢(c®—bq)x? 60q(c?—bq
B = (a4 ) (a4 )0 0 (3.50)
0 0 0 0
0 0 00

Thus, a Type (B.1) metric is Bach-flat if and only if ¢ = 0 or ¢? — bq = 0, in the latter
case being Einstein. Moreover,

(1) If ¢ = 0, then the Ricci operator in Equation is either zero or two-step
nilpotent and Equation gives Wisoa = —3c, thus distinguishing the
following two cases:

(@ If ¢ = 0 and ¢ = 0, then (M, g) is Ricci-flat and the only non-zero

component of the Weyl tensor is Wi219 = —3b. Therefore (M, g) is flat if
gq=c=b=0.
Otherwise, if ¢ = ¢ = 0 # b, then the Jacobi operators J(x)(-) =
R(z,-)x are two-step nilpotent. Hence (M, g) is Osserman and thus
half conformally flat. (See [59)] and the references therein for further
information about Osserman manifolds).

(b) If g = 0and c # 0, then (M, g) is not locally conformally flat. Moreover
the conformal Jacobi operators Jyw(x)(-) = W{(x, - )x are nilpotent
and (M, g) is half conformally flat. (See [86] and the references therein
for further information about conformally Osserman manifolds).

2) If¢q#0andb = %, then Equation|(3.28)|shows that W1334 = % and hence
(M, g) is not locally conformally flat. Equation shows that (M, g) is
Einstein and moreover the Jacobi operator J(z)(-) = R(xz,-)x associated
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3.2 Bach-flat non-reductive homogeneous manifolds

to any unit vector x has constant eigenvalues {0,e, 75, €4 755, €4 705 }» Where
g(x,x) =g, = £1.

Moreover (M, g) is locally isometric to a para-complex space form of con-
stant para-holomorphic sectional curvature H = —;%, and thus a modified
Riemannian extension as in [29].

Type (B.2)
Let 4 = {(z!, 22,23, 2%) € R%2* # 42} with coordinates (z', 22, 23, z%) and
metric tensor
g= <a - ﬁ + 4b(3:2)2) dzt o dzt + 4bz?dax! o da?
— az?((z*)? — 4)da' o da® — a(1 + 2222%) 2 dz! o dz* + bda? o dz? (3-5D)

a((z1)? — 4)da? o dz® — ax3ztda? o dz* — Jada' o dat,

1
2

where a # 0. The non-zero components of the divergence of the Weyl tensor are
given by

15b2? 15b
divy Wig = ——2% divg Wigg = ——2. (3.52)
a 2a
The Bach tensor is given by
2)\2
_ 1201;(21 ) _ 6065)212 0 0
60bz2 30b
B o = 00 (3.53)
0 0 0 0
0 0 0 0

Now it follows from the previous expressions that a metric is Bach-flat if

and only if b = 0, in which case it is Einstein and locally conformally flat, and thus

1

of constant sectional curvature £ = —-.

Type (B.3)
Let M = R* with coordinates (2!, 22, 23, 2*) and metric tensor

g = —2ae~"" 23dz' o da? + 2ae~* dz! o dx
+2(2b(23)? — az*)dz? o dx? — 4ba3dx? o da® (3.54)
+ 2a dx? o dx* + bda3 o da3,
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where a # 0. The divergence of the Weyl tensor and the Bach tensor are both zero.
Any non-reductive metric of Type (B.3) with b # 0 has two-step nilpotent Jacobi
operators and thus it is Osserman. Therefore, it is Einstein and half conformally flat.

Bach-flat metrics are critical points for the functional

W:g— W(g) = /M ||W||2dvolg

and one has that locally conformally Einstein metrics are Bach-flat. Hence, aimed to
describe all the non-reductive four-dimensional homogeneous conformally Einstein
metrics, one has the following result.

Theorem 3.9. Let (M, g) be a manifold given by Theorem[3.3] Then (M, g) is Bach-
flat if and only if it is locally conformally flat, Einstein or one of the following:

(i) Type (A.1) with ¢ = 0 and ab # 0:
g = (4b(2?)? + a) dx! o dzt + 4bx? dz' o da?
— (4axz* — 4c2® + a) dz' o dz® + 4ax? dx! o da?

+bdz? o dr? — 2(ax* — ¢) dx? o da® + 2a dx? o da* .

(ii) Type (A.1) with ¢ = —2% and ab # 0:
g = (4b(z%)? + a) dx' o dz' + 4bx? dx' o dx?
— (4ax’z* — 4ca® + a) dx' o da® + 4ax® dx' o dx?
+ bda? o de? —2(az" —c) da? o dz®+2a dz? o dat — 22 da? o da3.
(iii) Type (A.2) with o = 1 and abq # 0:
g= —2ae2*" da' o dad + ae?®" dx? o dz?
+bdax® o dxd 4 2¢da? o da* + qdat o da?.
(iv) Type (A.3) with metric
g4 = 2ae¥ dzt o dz* + ae?™ cos(z)2dx? o da?
+bdx® o dad + 2¢dx® o dz* + g dx* o da?,
where ab #£ 0 and b # —q, or with metric
g— = 2ae®” dz' o dzt + ae®®’ cosh(z?)2dx? o da?
+bda® o dad 4 2¢dx® o dz* + g dx* o da?,
where ab # 0 and b # q.
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3.2 Bach-flat non-reductive homogeneous manifolds

(v) Type (B.1) with ¢ = 0 and ac # 0:
g = (4ca?a® + 8c(2?)?a* + 2ax® + 4b(2?)?) dz' o da?
+ 2(dez?x + cx® + 2b2?)dxt o da® + 2(2cz? + a)dx! o da?
+ 4ax?drt o dz* + (2cz* + b)dx? o dz?
+ 2cdx? o dz® + 2a dx? o dat .

Half conformally flat non-reductive homogeneous spaces

A special class of Bach-flat spaces is that of half conformally flat manifolds. While
half conformally flat Lorentzian metrics are locally conformally flat, there are many
strictly half conformally flat examples in the Riemannian and neutral signature set-
tings. Recall that a four-dimensional manifold is half conformally flat if and only if
is conformally Osserman [13]], i.e., the spectrum of the conformal Jacobi operators
Jw(z)(+) = W(x, - )z is constant on the unit pseudo-spheres S* (7, M) at each
point p € M (see [86] and the references therein).

An explicit calculation of the conformal Jacobi operators shows that a metric
given by Theorem [3.5]is half conformally flat and not locally conformally flat if and
only if it corresponds to one of the following cases:

Type (A.1) with ¢ = 0 and ab # 0.
Type (A.1) with g = —%a and ab # 0.
Type (B.1) with ¢ = ¢ = 0 and ab # 0.
Type (B.1) with ¢ = 0 and ac # 0.
Type (B.1) with ag # O and b = <.
Type (B.3) with ab # 0.

Note that this agrees with the description of (anti-)self-dual non-reductive homoge-
neous spaces in [27]]. Moreover, the conformal Jacobi operators are two-step nilpo-
tent in all cases but the one corresponding to Type (B.1) with ag # 0 and b = %
where they diagonalize.

It is worth mentioning that in some of the cases above the manifold is also
Einstein and thus pointwise Osserman, i.e., the spectrum of the Jacobi operators
J(x)(+) = R(x, - )x is constant on the unit pseudo-spheres S* (T, M) at each point
p € M (see [59] for further information about Osserman manifolds).

More precisely, a metric given by Theorem [3.5]is Osserman if and only if it is of
constant sectional curvature (cf. Remark [3.6) or otherwise:
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(i) (M, g) is of Type (B.1) with ¢ = ¢ = 0 and ab # 0, in which case the Jacobi
operators are two-step nilpotent, or

(ii) (M, g) is of Type (B.1) with ag # 0 and b = %. In this case, for any unit
spacelike vector the corresponding Jacobi operator J (z)(-) = R(x, - )z is di-
agonalizable with eigenvalues {0, e, %, 125, 1605 }, where e, = g(,2);
thus the manifold is locally isometric to a complex or para-complex space
form [59]. A long but straightforward calculation shows that for any non-null
vector z, the vector space span{z} @ ker(J(z) — ;.5 Id) is of Lorentzian

signature. Hence (M, g) is a para-complex space form.

(iii) (M, g) is of Type (B.3) with ab # 0, in which case the Jacobi operators are
two-step nilpotent.

Moreover, it is worth emphasizing that in all the cases above the manifold is locally
symmetric.

Remark 3.10. A long but straightforward calculation shows that a metric given by
Theorem [3.5]of non-constant sectional curvature is locally symmetric if and only if it
is

Type (A.1) with b = 0 and a(a — 4q) # 0, in which case (M, g) is locally
conformally flat with diagonalizable Ricci operator. Hence locally isometric to
aproduct R x N, where N is of constant sectional curvature Ky = —é,

or it corresponds to one of the following cases:

Type (B.1) with ¢ = ¢ = 0 and ab # 0, in which case (M, g) is Osserman with
two-step nilpotent Jacobi operators.

Type (B.1) with aq # 0 and b = %, in which case (M, g) is a para-complex
space form.

Type (B.3) with ab # 0, in which case (M, g) is Osserman with two-step
nilpotent Jacobi operators.

See [59] for a classification of locally symmetric four-dimensional Osserman mani-
folds and [[26]] for a description of gradient Ricci solitons on non-reductive homoge-
neous spaces, where metrics of Type (A.1) with b = 0 play a distinguished role.
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3.3 Non-reductive conformally Einstein homogeneous manifolds

3.3 Non-reductive conformally Einstein homogeneous man-
ifolds

The purpose of this section is to prove Theorem3.1] determining which non-reductive
homogeneous four-manifolds contain an Einstein metric in their conformal class. We
will exclude from our analysis the trivial cases of Einstein and locally conformally flat
manifolds. Moreover, we will obtain the explicit form of the conformal Einstein met-
ric. Since any conformally Einstein manifold is necessarily Bach-flat, Theorem [3.9]
shows that the analysis of the conformally Einstein equation

1
2Hes, +op= 1 {2Ap + 9Ty (3.55)

must be carried out only for the following cases:
(1) Type (A.1) with ¢ = 0 and ab # 0:
g = (4b(z?)? + a) dz' o dz' + 4bx? dx! o dz?
— (4ax’zx* — 4ca® + a) da' o da? + 4ax® dx! o da?

+ bdz? o do? — 2(ax* — ¢) dx? o da® + 2a dz? o da* .

(i) Type (A.1) with ¢ = —32 and ab +# 0:
g = (4b(2?)% + a) dx! o dx! + 4ba? dzt o dz?
— (4ax’z* — 4ca® + a) dz' o da® + 4ax? dx! o dx?
+ bda? o da? —2(az* —c) da® o dz*+2a da? o da* — 22 dad o da3 .
(iii) Type (A.2) with o = 1 and abg # O:
g = —2ae?*" dz' o dad + ae® da? o da?
+bda? o da® + 2cdx® o dz* + qdx? o da? .
(iv) Type (A.3) with metric
ge = 2ae® dzt o dat + ae®’ cos(z)2da? o da?
+ bda® o da® + 2¢da® o da* + g daz? o da?,
where ab # 0 and b # —q, or with metric
g- = 2ae¥’ dz' o dz* + ae®’ cosh(x*)2da? o da?
+ bda? o da® + 2¢da® o dz* + g dz? o da?,
where ab # 0 and b # q.

103
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(v) Type (B.1) with ¢ = 0 and ac # 0:
g = (4ca®x® + 8c(2?)?z? + 2ax® + 4b(2?)?) da! o da?
+ 2(4cx?a* + cad + 2b2?)dxt o dw? + 2(2cx? + a)dx! o da?
+ daz?dzt o dz* + (2cx* 4 b)dx? o dx?
+ 2cdz? o dz® + 2a dx? o dxt.
Theorem Let (M, g) be a conformally Einstein four-dimensional non-reductive
homogeneous space. Then (M, g) is Einstein, locally conformally flat, or locally
isometric to:
(i) (R*, g) with metric given by
g = (4b(z%)? + a) dx' o dz' + 4bx? dx' o dx?
— (4ax’z* — 4ca?® + a) da' o da® + 4ax? dx! o da?
+bdz? o dx? — 2(ax* — ¢) dz? o dz® + 2a dx? o dxt,

where a, b and c are arbitrary constants with ab # 0.

(ii) (R%, g) with metric given by
g = (4b(2?)? + a) dx! o dzt + 4bx? dz' o da?
— (4axz* — 4c2?® + a) dz' o dz® + 4ax? dx! o dz*
+bdz? o de?—2(az? — ¢) da? o dad+2adz? o dz* — 32 da? o da?,

where a, b and c are arbitrary constants with ab # 0.

(iii) (R*, g) with metric given by
g= —2ae2®" dzl o dz3 + ae?® dz? o da?
+ bdx? o dxd 4 2cda® o da* + g dx? o da?,

where a, b, ¢ and q are arbitrary constants with abq #~ 0.

(iv) (U C R*, g}) with metric given by
g4 = 2ae¥’ dzt o dz* + ae?™’ cos(zt)2dx? o da?
+ bdx? o dxd 4 2cda® o dz* + g dx? o da?,

where 4 = {(zt,...,2*) € R* / cos(z*) # 0}, and a, b, c and q are arbitrary
constants with ab # 0 and b # —q, or

(R4, g_) with metric given by
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3.3 Non-reductive conformally Einstein homogeneous manifolds

g- = 2ae¥’ dz' o dz* + ae*’ cosh(x*)2da? o da?
+ bdx3 o dad + 2cda® o da* + qdx? o dx?,

where a, b, ¢ and q are arbitrary constants with ab #= 0 and b # q.

Moreover, all the cases (i)—(iv) are in the conformal class of a Ricci-flat metric which
is unique (up to an homothety) only in Case (i). Otherwise the space of conformally
Ricci-flat metrics is either two or three-dimensional.

In what follows we will use the necessary conditions obtained by Kozameh, New-
man and Tod [72]] stated in Theorem[I.14] Relating the solutions ¢ of the conformally
Einstein Equation [(1.6)] and the conformal deformation o by ¢ = —log(y), as a
matter of notation, we define a (0, 3)-tensor field C by C = (diva W)(X,Y, Z) +
W(X,Y, Z,Vo). Obviously, C;jr = —Cj, foralld,j,k € {1,...,4} and C = 0 is
equivalent to Theorem [I.T4}(ii).

Recall that conditions (i)—(ii) in Theorem [I.14] are also sufficient to be confor-
mally Einstein if (M, g) is weakly-generic (i.e., the Weyl tensor, viewed as a map
TM — ®3 T M is injective). Note that cases (i)—(iii) in Theoremare not weakly-
generic and thus we must study the existence of solutions of Equation [(3.35)| case by
case. In opposition, metrics corresponding to Theorem [3.9}-(iv) are weakly-generic.

3.3.1 Type (A.1) with g =0and ab # 0 or ¢ = —2* and ab # 0

We consider the two possibilities separately.

Type (A.1) with ¢ = 0 and ab # 0

In this case by Equation [(3.35)] the non-zero components of the divergence of the
Weyl tensor are given by

12 ba? b
divy Wia1 = aa: ; divy Wigo = %, (3.56)

and, by Equation[(3.11)] the only non-zero component of the Weyl tensor is given by
Wio12 = —6b, (3.57)

which shows that (M, g) is not weakly-generic. For an arbitrary positive function

o(zt, 2%, 23, 2%) on M, let o = — log(¢p). Then a straightforward calculation shows
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that the gradient of o is given in the coordinate basis by

Vo = g {(az — ) pa + aps} On
— a% {@4 (a + 4a? (am4 — c)) + 4ax2<p3} 0,2
—90 {a (2@3 — 22209 + 901) + 24 (a:z - c)} 0,3
7{@4 (ab + 4daz* (az* — 2¢) + 4¢?) + 2ap; (az? — ¢
+a (4@3 (a:c — c) + o (49L'2 (c — a:134) — a))} Oy,
where ; = %g} denote the corresponding partial derivatives.
Thus, the only non-zero components of the tensor C = diva W + W (-,-,-, Vo)
are those given by
a’pCra1 = —12b ((p4 (a — 42 (c — a:):4)) + dax?p3 + 2a:1:2g0) ,

(3.58)
a?pCiog = —12b (—2¢4 (c — az) 4 2ap3 + ayp) .

Since C = 0 is a necessary condition for (M, g) to be conformally Einstein,
ap(Cia1 — 202C122) = —12bp, must be zero and, since b # 0, in this case ¢ does
not depend on the coordinate 2*. Then

—12b(p + 2
Cio2 = M, Cra1 = 20%Ca2 .
ay
Hence, C = 0 shows that
:::3
p(a!,a?2%) = e 7 gz, a?), (3.59)

for some smooth function ¢(z!, 2?).
Now, we analyze the existence of solutions of Equation for some ¢ as
above. In order to simplify the notation, set

1
& =2Hes, +pp — Z{QASD +¢Tlg,

and determine the conditions for E=0.

Since £(Dy1,0y1) = 27 ¢11(x ,z%), any solution of Equation [(3.55) must be
of the form given in Equation[(3.59) with ¢ (2!, 2?) = a1 (2?) + 2 az(2?) for some
smooth functions oy, az on M. Taking into account that

23

S(axlvaacQ) =27 ( 1( 2) + (1'1 - 1)0/2(1'2))7
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3.3 Non-reductive conformally Einstein homogeneous manifolds

we can show that oy (22) = pu1 and ao(2?) = pua for some constants i1, po. Fur-
3

ther, the component £(0,2,0,4) = —2p2e” "z shows that yp = 0 and hence Equa-

tion [(3.59)| reduces to

23

o= e 2.
Now, a straightforward calculation shows that £ = 0 holds and the conformal metric
g = ¢ 2gis Ricci-flat.

Remark 3.11. Since any non-reductive homogeneous manifold of Type (A.1) with
g = 0 and ab # 0 is conformally Osserman with two-step nilpotent conformal Jacobi
operators, and this property is conformally invariant, the metric g is Osserman with
two-step nilpotent Jacobi operators.

Type (A.1) with ¢ = —=F and ab # 0.

Proceeding as in the previous case, for an arbitrary positive function p(x!, 22, 23, z%)

on M we consider o = —log(¢). Then
Vo = a% {a (@3 +32%p2 — 301) + ¢4 (az’ — ) } O
— %p {2¢4 (2% (az* — ¢) + a) + az? (2p3 + 62%p2 — 3p1) } 0,2
%p {a (23 — 22%0s + 1) + 294 (az* —¢)} 9,5
Tgo{Q‘M (a?(z*)? + ab — 2acz* + ¢?)
+a (1 (az* — ¢) =2 (2 (2% (az* — ¢) + a) +¢3 (¢ — az?))) } Opa .

Recall from Equation that the non-zero components of the divergence of the
Weyl tensor are given by

divy W91 = —%, divy Wige = _%7 divy Wiz1 = w7
divy Wage = 3—2, divy Whge = divy Wogy = Sbr
Equation shows that the non-zero components of the Weyl tensor are
Wig12 = =30, Wigig = 3bz%,  Wigg = 2,
Wiziz = —3b(z?)?, Wizes = —%, Wogog = —3b.

Then, the non-zero components of the tensor field C are given by

2 1
Ci31 = —2°C121, Coz1 = —5C121,
_ 2 _ 1
Ciz2 = —2°C122, Ca32 = —5C122,
2 1
Ci33 = —2°C123, Cozz = —5C123,
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where
a2cp C121 = 6b (x2 (2a<p + ap1 — 2aps — 2acp4x4 + 2c<p4)
—apy — 2ag02(a:2)2) ,
a?p Cra2 = 3b (2ap + ap1 — 2aps — 2apax? — 2apz* + 2cp4)
a?pCia3 = —3abyy .

Since ab # 0 and C123 = 0 the function ¢(z!, 22, 23, 2*) does not depend on the

coordinate z# and the tensor field C;o; reduces to
Ciz2 = a {20 + o1 — 2p3 — 2002}, Ci21 = 22°Cia2.

A solution of the differential equation 2 = 23 + 2229 — 7 is necessarily of the
form

o(x!, 22, 2%) = eihlgb(e%lxz, 22! 4 27) = e~ (p o) (x!, 2%, 2%), (3.60)

where (2!, 22, 23) = (2" 22,2z + 23) and ¢(z,w) is an arbitrary function for
1
z=e? g2 and w = 22! + 23,
Now, we analyze the existence of solutions of Equation for some ¢ as in

Equation[(3.60)] Setting
€ =2Hesy +¢pp — i{mso + ¢ T}y,
one has £(0,2,0,2) = 2625"’1832¢ = 0, and hence
ozt 22, 2%) = 72 (62”51932(;3(23:1 +23) + (22! + 333))

for some smooth functions ¢(w), ¢(w). Considering the component & (9,2, d,3) =
24/ — ¢ = 0, one has that ¢(2z! + 2°) = pez @' +2%) for some constant 1. Now the
only non-zero components of the tensor field £ are given by

E(Dy1,041) = 2E(Dy1,0ys) = 26(Dys, 0ys) = 42" (¢ — 3¢ +24") .
Hence £ = 0 gives ¢(2z! + 23) = ,ule%@x“rxg) + pe? +2° and thus any solution
of the conformally Einstein equation is of the form

1

3 1,3_,1 3 1
¢($,$2,$3,$4):/J,16x +,U/262z x _’_M3x2ex+x )

N

Moreover, any of the conformal metrics § = ¢ ~2g is Ricci-flat.
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3.3 Non-reductive conformally Einstein homogeneous manifolds

Remark 3.12. Since any non-reductive homogeneous manifold of Type (A.1) with
q= —%a and ab # 0 is conformally Osserman with two-step nilpotent conformal Ja-
cobi operators, any conformal Einstein metric g is Osserman with two-step nilpotent
Jacobi operators. Moreover, there is a 3-parameter family of conformally equivalent
Osserman metrics. This shows that the cases ¢ = 0 and ¢ = —%a are essentially
different since the space of conformally Einstein metrics is one-dimensional in the

first case and three-dimensional in the second one.

3.3.2 Type (A.2) with o« = 1 and abg # 0

Let p(z!, 22, 23, %) be a positive function on M and 0 = —2log(ip). Then

Vo= {ae’w (103 — cipa) — e 747"y (¢ — bq)} Oy

— e D2+ Zp1e7 0 — o1 {2as04 + 205016_2:64} Oyt -

It follows from Equations [(3.14)] and [(3.38)| that the non-zero components of the
Weyl tensor and its divergence are given by

ab 4.4 b ) b

Wasag = —e**, Waygs=—-  and divg Wiz = ——,

respectively, from where it follows that (M, g) is not weakly-generic. Therefore, the

only non-zero components of the tensor field C = divg W + W (., -, -, Vo) are those
given by

(3.61)

Since a b # 0, the first two expressions in Equation[(3.61)|show that gp(:pl, %, 3, CL‘4)
does not depend on the coordinates x! and z2. Hence, the tensor field C reduces to

b(p — 4
Caps = LE = 1)
qp
where ¢ is a smooth function on the coordinates (x3, %) and it follows from C343 = 0
that (23, z4) = ¢(23)e*", for some smooth function ¢(z3).
Considering now the conformally Einstein Equation and setting

1
€ =2Hes, +pp— {280+ ¢ 7}y,
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the only non-zero component of the tensor & is

e (20"~ b9)

5(8303’3:133) = q

Integrating £(0,3, 0,3) = 0 we obtain that

4_,3 /b 3 [2b
4,0:6‘76 x\/;<f€1ez\/j+f€2>, if bg >0,
@:6””4 (nlcos (3:3,/—2%) + K9 sin (x?’,/—Q%)), if bg<O0.

Moreover, a long but straightforward computation shows that the metric § = ¢~ 2g
for any function ¢ given by Equation[(3.62)|is Ricci-flat.

(3.62)

Remark 3.13. For each of the possibilities in Equation there are at least two
conformal metrics which are Einstein (indeed, Ricci-flat). Moreover, for any of
the conformal Einstein metrics, there are some conformal deformation of the met-
ric which remains Einsteinian.

Further observe that no metric (A.2) with & = 1 and abq # 0 is half conformally
flat, and hence they are not in the conformal class of any Osserman metric.

3.3.3 Type (A.3) with metrics g, and b # Fq, ab # 0

We will briefly schedule the proof of the case corresponding to g4. The analysis of

g— is completely analogous. Hence assume b # —q and ab # 0. As in the previous

cases, let p(x!, 22, 23, ) be a positive function and set ¢ = — log((). Then

Vo = a21b<p {26*45”3 (aem3 (cp3 — boa) + o1 (bg — 02)> } Ot
— 26% {6729:3 sec (x4)2} 0,2 + ﬁ {690167213 - a<P3} Oy
— %9016_23:38904 .

It follows from Equations|(3.17)[and |(3.41)|that the non-zero components of the ten-
sor C = divgy W+ W(-,-,-, Vo) are given by

b Casn = (b+q) cos (z4)> 01, bpCoss = —(b+ )2,

—2z3

apCs43 = —(b+ q)e™ =" 1, (3.63)

abpCsy=—(b+ q)e‘h3 (a (o — ¢3) 27 4 c<p1> .
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3.3 Non-reductive conformally Einstein homogeneous manifolds

Since ab # 0 and b # —q the first two equations show that ¢ does not depend on the
coordinates ' and - and the tensor field C reduces to

bpCass = —(b+q) (v —3),

where ¢ is a smooth function on the coordinates (z3,z*). Now C344 = 0 gives
o(23,2%) = ¢(zh)e™, for some smooth function ¢(z4).

Consider now the conformally Einstein equation and set, as in the previous cases,
& = 2Hes, +pp — %{QAQD + ¢ 7}g. A straightforward calculation shows that the
only non-zero component of the tensor field £ is given by

1 .3
5((914, 8934) = gex ((b - q)<b + Qb(b”) R

which shows that ¢(x?) is determined by the equation ¢” = —bz;bqu. Hence the
conformal deformation (23, %) is given by

P+ = (M1x4 + /1'2)69337 if b—q=0,

A fa=b /2(a=b)
0y = e$3 4 q2b <Iulex4 qb + MQ) , if b(q — b) > 0,
op = e (,ul cos(a;4\/l’2f>+u2sin<x4 l’2q)> , ifb(g—10)<0.

Moreover in all the cases above the conformal metric g, = gof g+ 1is Ricci-flat.
The case of g_ is obtained in a completely analogous way. For any metric g_
given by Equation [(3.18)] the conformal metric §_ = ¢~2g_ is Ricci-flat, where

(3.64)

oo =(mat + pp)e””, if b+q=0,

_pd, Jatb /2(q+b)
o :e:z:S x4 o <M1€x4 qb + /‘2> 7 if b(q + b) >0,
o_ :e$3<,u1 cos (1‘4\ /b;%q> + posin (x‘ﬂ /b;bq» , ifb(g+0b) <O0.

Remark 3.14. For each of the possibilities in Equations [(3.64) and [(3.63)| there are
at least two conformal metrics which are Einstein. Equivalently, for any conformally
Einstein metric, there are some conformal deformation of the metric which remains
to be Einstein.

Further observe that no metric of Type (A.3) withe = +1, b # Fq and ab # 0 is
half conformally flat, and hence ()M, g) is not in the conformal class of an Osserman
metric.

(3.65)
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3.3.4 Type (B.1) with ¢ = 0 and ac # 0

Setting ¢ = 0 in Equations [(3.28)| and [(3.49)| the non-zero components of the Weyl
tensor and its divergence are given by

X 456222 . 45¢2
d1V4 W121 = — ZCGQ:E s d1V4 W122 = — 4;2 s and
2
3c243 4 3c(a+2cx
Wigip = 352 — 3 (b + 2cat), Wiz = _%7
2 3c? 3
Wig14 = —3cx?, Wiz = — 5., Wigos = — 5,

respectively. This shows that, in opposition to the previous cases, (M, g) is weakly-
generic and thus C = divy W + W(-,-,-,Vo) = 0 is a necessary and sufficient
condition to be conformally Einstein.

As in the previous cases, consider p(x!, 22, 23, 2*) a positive function and set
o = —log(p). Express the gradient of o as

Vo = i, {cps — aps} O + 55 {20° (a3 — cpa) — apa} Op
T % {2% (2ap3 — cip1) — apr + 200927} Oys
+ % {54,04 — P2 (a + 203:2) + cp1 — cg03x3 + 2cg04a:4} Oyt

Now, the components C123 and Cyo4 of the tensor field C = divy W + W (-, -, -, Vo)
are given by

aCi23 = 3cps, a @ Ciay = 3¢y,
and, since ¢ # 0 and Ci23 = C124 = 0, the function ¢ is independent of the coor-

dinates 3 and z*. Assuming ¢ to be a smooth function on the coordinates (z', z2),
the non-zero components of C reduce to

3¢ (agpl — 15cg0m2)

3¢ (15¢p — 2ap2)

= — = 3.66
Ci21 pEp ; Ci22 2025 (3.60)
A straightforward computation shows that C;22 = 0 if and only if
o= (a)es ™, (3.67)
for some smooth function ¢(z!). Then C12; becomes
3c (ag'(x') — 15cax?p(x!)
Ci21 = — ( ) (3.68)

a’¢(z') ’

from where it follows that ¢ vanishes identically, and hence ¢ = 0, which is a con-
tradiction. Hence this manifold is not conformally Einstein.
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3.3 Non-reductive conformally Einstein homogeneous manifolds

Remark 3.15. Observe that the conformally Einstein metrics in Theorem [3.1}-(i) are
always of neutral signature, while metrics corresponding to cases (ii) and (iii) may
be either Lorentzian or of neutral signature (2,2), depending on the choice of the

parameters defining the metrics [(3.12)] [(3.15) and[(3.18)]

Remark 3.16. Let (M, g) be a non-reductive and not locally symmetric homoge-
neous pseudo-Riemannian manifold of dimension four with g the isometry algebra
and b its isotropy subalgebra. Then, the pair of Lie algebras (g, h) is isomorphic to
one of the following Types: (A.1), (A.2), (A.3), (A.4), (B.1) or (B.2). Conversely, for
every pair of Lie algebras (g, b) in this list there exits a non-reductive homogeneous
pseudo-Riemannian four-dimensional manifold with isometry algebra g.

Moreover, the Ad(H )-invariant subspace m (excluding (A.3) with e = 1) is a
subalgebra of g which implies that each case in the list is locally isometric to a Lie
group G with a left-invariant metric as follows:

(i) The Lie group R x SL(2,R) is locally isometric to Type (A.1) with Lie algebra
m given by

[Ul, UQ} — 2“27 [u17 ’LL4] = _2u47 [u27 ’LL4] = 2U1 .
(i) The Lie group R x R? is locally isometric to Type (A.2) with Lie algebra m
given by
[u,us) = (@ + Duy, [ug,ug] = qug, [uz,us] = (—1)ug, or
to Types (A.4) (B.2) with Lie algebra m given by
[uh UQ} = QUQa [ula U4] = U4 .
(iii) The Lie group R x E(1,1) is locally isometric to Type (A.3) for ¢ = —1 with
Lie algebra m given by
[Ul, U3} - 2U1, [u27 u3] = uz, [u27 ’LL4] = Uuz.
(iv) The Lie group R x H?3 is locally isometric to Type (B.1) with Lie algebra m
given by

[ur, uo] = 2uz, [ur,us] =us, [ur,us] = —u4, [uz,ua] =us.
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Part 11

New examples of Bach-flat metrics
and Ricci solitons






Chapter 4

Bach-flat 1sotropic gradient Ricci
solitons

Bach-flat structures and Ricci solitons are natural generalizations of Einstein met-
rics. The Riemannian situation is quite rigid, since Bach-flat four-dimensional com-
plete gradient Ricci solitons are locally conformally flat in the shrinking case [36].
The steady case is more involved and triviality of complete Bach-flat gradient Ricci
solitons is proved in [34] under the assumptions of positive Ricci tensor and scalar
curvature attaining a maximum at some interior point.

The purpose of this chapter is to show the existence of non-trivial examples of
Bach-flat gradient Ricci solitons in neutral signature. For that, we construct a family
of Bach-flat metrics (see Theorem 4. T)) analyzing the existence of gradient Ricci soli-
tons. Examples of self-dual gradient Ricci solitons which are not locally conformally
flat were already known in signature (2,2). Hence, our description can be consid-
ered as a generalization of Theorem[I.27]allowing to obtain non-trivial anti-self-dual
examples at the same time. In this chapter we report on work investigated in [33]].

4.1 Bach-flat Riemannian extensions determined by a par-
allel tensor field

Our first main result concerns the construction of Bach-flat metrics:

Theorem 4.1. Let (3, D, T) be a torsion free affine surface equipped with a parallel
(1,1)-tensor field T. Let ® be an arbitrary symmetric (0, 2)-tensor field on ¥. Then
the Bach tensor of (T*X, gp @ 1) vanishes if and only if T is either a multiple of the
identity or nilpotent.

Proof. In order to compute the Bach tensor of (T*X, gp o 1), first of all observe that
being " parallel imposes some restrictions on the components 77; as well as on the
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Bach-flat isotropic gradient Ricci solitons

Christoffel symbols of the connection D:
T Pryy2 — 172, PTypt =0,
T'y PT 9% — T2 Pl =0,

T2, P70t + (1% — TYH) PIy 2 = T2 PIp? = 0,
DT =0= 4.1)
Ty PTt 4 (T% — Th) PTipt — T PTp? =0,
T? PTypt + (T?%5 — TYy) PTy9? — T2, PTpp? = 0,
T PT ot + (1% — T1) PTop' — T PTpg® = 0.
Then, expressing the Bach tensor B;; = B(0,:,0,;) in induced coordinates
(2%, z4), a long but straightforward calculation shows that
Bi1 Bio &
(%”) = B1g Boo , “4.2)
B |0

> 1 Tl _T2 2T2
B = 6((T11 —T2)2 +4T5%T%) - (TH +T?%) - < 1 2 1 >

2Ty T2y —TY
and where the coefficients 811, B12 and Bog can be written in terms of 0 = det(T")
and t = tr(7") as follows:
By = —+ {100% — 2(£ 4 13T%t — 15(T%3)?)d?
(5t — T%)(t— T?%)t%0 — (t — T2y) %4} 22,

— 5 {(T?%1)%(300% + t*0 — t*) } 23,

— {13t - 30T2 + (3t = T?%) 0 — (t — T% )t} T% 2wy

— 3 {(Prt + 2DF12 )(t — 2T2%5) + 272, PT90%} (12 — 40)tay

— 2 {PT12(t = 2T%) + 2T, PT 9%} (£ — 40)twy

— 1 {100% 4 (3t — 22725t + 14(T?%)*)0

—( = 4T%t + 2(T%)*) 82} @1y

— 2 {(11t — 14T%)0 — 2(t — T?%5) 2} T?1 @1,

{2 =70} (T%)* P

— 2(9,2PT11? — 9,1 PT15?) (40 — £2),

+
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4.1 Bach-flat Riemannian extensions determined by a parallel tensor field

Bio = —¢ {(13t — 30722)02 + (3t — T2y)t%0 — (t — T%)t1} Toa?,
+ é {(17t — 30T22)0% — (2t + T25) %0 + T4} 72122,
+ £ {200% + 4(48> — 15725t + 15(725)?)0?
—(36% + 2Tt — 2(T?2)?)t%0 + 2(t — T?5) Tt } my/ oy
— {PIpt(t = 2T%) 4 272, PTp' } (£ — 40ty
— 2 {PT1%(t = 2T%)) + 2T%, PT9y% } (£ — 40)tzoy
¢ { (11t = 14T%)0 — 2(t — T?)?} Ty @1y
+ & {402 + (6% — 28725t + 28(T2%3)%)0 — (t — 2T%9)*t} @19
+ § {(3t = 14T25)0 + 272,82 } T? Dy
(0,2PT 11t — 9, PT1ot — 0,2PT192 + 9,1 PT0?) (12 — 40) }

Boo = —¢ {3002 — t! + t20} (T13)%a?,
— £{100% 4 2( — 17Tt + 15(T25)?)0?
+ (4t + T?9)T%t%0 — (T%)*t*} 23,
+ 2 {17t = 30T29)02 — (2t + T29)t%0 + T2t} T yay oy
— L {PTpt(t — 2T%) 4 2773 PT9 } (£ — 40ty
+ 2 {PT02(t — 27?%) — 27% PTyot} (£ — 40)tay
—3(70 = &)(T"9)*@1
+ 3 {(3t = 14T%5)T 50 + 2T, 12542} By
— £ {1002 — (5% + 6729t — 14(T%)%)0 + t* — 2(T%)*t*} Doy
— 2(0,2PT12" — 9,1 PT90") (2 — 40) .

Suppose first that the Bach tensor of (7% ,9D,® ) vanishes. We start analyzing
the case 7"y = 0. In this case, the expression of %5 in Equation [(4.2)|reduces to

1
B — 6(Tvl1 o T22)2 . (Tll + T22) X (

TY — T2 2772
! 2 ! ) (4.3)

0 T?9 —TY

If T2, = T';, we differentiate the component B; in Equation twice with
respect to xo/ to obtain T’ 2,T', = 0. Thus, either 7%, = 0 and T is a multiple of
the identity, or 7' = 0 and, in such a case, T is determined by 70,1 = 7210, and
therefore it is nilpotent. If 725 # Ty, then Equation[(4.3)]implies that 725 = —T"4.
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In this case, we differentiate the component B in Equation [(4.2)] twice with respect
to 2o and obtain T, = 0. Thus, as before, T is nilpotent.

Next we analyze the case 7'y # 0. We use Equation to express

1,2 2 2
byt =T 1T12T 2Pt + %DP2217 bryy? = ITT;DFQI,
2 1.2
PTp? = %Drml, Drgg? = PTpt — L 1T12T 2DTgot
Considering the component 981, in Equation
- 1
B = 6(T11 —T?) - (T + T%) - (T — T?2)* + 4T, T%),

we analyze separately the vanishing of each one of the three factors in B

Assume that T2 = T4 In this case, component %12 in Equation [(4.2)| reduces
to By = %Tlg(T21)2T11; since we are assuming that 7'y # 0, then either 7%, = 0
or 7?1 # 0 and Ty = 0. If 72, = 0, the only non-zero component of the Bach
tensor is given by Boo = —(T15)*(T11)%(3(T11)%x% 4 ®11), from where it follows
that 7'y = 0 and hence T is determined by 70,2 = T'30,1 and is nilpotent. If
T2, # 0 and Ty = 0, then we differentiate the component B, in Equation
with respect to 21 and xo/ to get T’ 1,72, = 0, which is not possible since both T,
and T2, are non-null.

Suppose now that 729 = —T'';. In this case, we differentiate the component
B9 in Equation twice with respect to x1/ and as a consequence we obtain
T'9(TY9T? + (T11)?) = 0; since we are assuming Tty # 0, it follows that T?; =

(7;112)2. Thus, the (1,1)-tensor field T is given by 70,1 = T',0,1 — (7;112)2 0,2 and
TO,2 = T'90,1 — T'10,2, and therefore it is nilpotent as well.

Finally, suppose that (T'; — T25)? 4 4T'5T?; = 0; since Ty # 0, this is
equivalent to T2, = —%. Now, we differentiate the component B9s in
Equation twice with respect to x1/ to obtain T (Tt + T23) = 0. Thus,

we have that T2y = —T"'y and T is given by 70,1 = T'10,1 — (T112)28x2 and

T1
TO,2 = T190,1 — T'10,2, which again implies that T is nilpotent.

To conclude the proof we show the “only if”” part. If 7" is a multiple of the identity,
then (7%, gp.o,7) is self-dual by Theorem and therefore it has vanishing Bach
tensor. Thus, we suppose 1’ is parallel and nilpotent and, in this case, we can choose a
system of coordinates (x!, 2%) such that T is determined by 70,1 = 0,2 and 70,2 =
0. Hence, examining Equation[(4.2)] clearly B = 0 and, since ? = t = 0, one easily
checks that 811 = B2 = Bay = 0, showing that the Bach tensor of (1%, gp ¢ 1)
vanishes. O
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4.1 Bach-flat Riemannian extensions determined by a parallel tensor field

Remark 4.2. We emphasize that even though the Bach tensor of the metrics gp o 7
depends on the choice of ® (as shown in the proof of Theorem [4.1)), the existence
of Bach-flat metrics in Theorem is independent of the symmetric (0, 2)-tensor
field @, thus providing an infinite family of examples for each initial data (X, D, T)).
Moreover, note that the metrics gp o 7 are generically non-isometric for different
deformation tensor fields ®.

The Bach-flat modified Riemannian extensions in Theorem 4.1] obtained from a
(1, 1)-tensor field of the form 7" = ¢1d are not of interest for our purposes since they
all are half conformally flat (cf. Theorem [1.24). Hence, in what follows we focus
on the case when 7' is a parallel nilpotent (1, 1)-tensor field and refer to gp ¢ 7 as a
nilpotent Riemannian extension.

Remark 4.3. The nilpotent Riemannian extensions to be considered in what remains

of this chapter are those induced by a parallel nilpotent (1,1)-tensor field 7" on an

affine surface (X, D). In this case, there exist suitable coordinates (z', 2?) where

T0,1 = 0,2 and T0,2 = 0, and it follows from Equation that the Christoffel
symbols of D satisfy

1 1 1
Pript =0, Prip® =Ty’ Pryp'=0, PIyp’=o0.
A straightforward calculation shows that the Ricci tensor satisfies
pD B 6I2DF112 — amlDFHl 8x2DF111
—0,2PT ! 0

Hence, p? is either zero or of rank one and one easily gets that p? is recurrent, i.e.,
DpsD =7N® psD , with recurrence one-form

n = {0, InpP(0,1,0,1) — 2PT11 Yda! + 0,2 In pP (9,1, 0,1 )da® (4.4)

(see also Theorem 5.1-(iii)).

Moreover, in the special case that the Ricci tensor is symmetric (pﬁ = 0 or,
equivalently, 9,2°T'111 = 0), work of Wong [104] shows that p” is recurrent and of
rank one if and only if there exist local coordinates where the only non-zero Christof-
fel symbol is © I'112(2!, 22). Furthermore, in this case one has

pP = 0,2PT112(zh, 2?)da! @ dat
and Dp” = w ® pP, where the recurrence one-form is given by
w = (0y InpP)dz! + (0,2 In ph)dz?
0,10,2PT 12 0,20,2PT 1,2 4.5)

= dat dz? .
8$2DF112 Tt 8352DF112 v
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4.2 Bach-flat gradient Ricci solitons

Let ® be a symmetric (0, 2)-tensor field on (X, D, T'). One uses the nilpotent struc-
ture T to construct an associated symmetric (0, 2)-tensor field ® given by ®(X,Y")
=®(TX,TY), for all vector fields X,Y on X.

Further, proceeding as in Lemma let (2!, 22) be local coordinates where
TO0, = Op2, TOp2 = 0 (just 1nterchangmg the order of the coordinates in Asser-
tion (1) of Lemma |5.4). Setting & = @Z]daz ® dxz? one has that o expresses as
= CI)de ®dxl = CIDQde ® dxt.

4.2.1 Einstein nilpotent Riemannian extensions

Riemannian extensions gp ¢ 7 With T' = cld are Einstein if and only if the deforma-
tion tensor ® is given by the symmetric part of the Ricci tensor (cf. Theorem [I.23).
In the nilpotent case (T’ 2 = 0) one has:

Theorem 4.4. Let (X, D, T) be an affine surface equipped with a parallel nilpo-
tent (1,1)-tensor field T and let ® be a symmetric (0,2)-tensor field on . Then
(T*X, gp,o 1) is Einstein (indeed, Ricci-flat) if and only lf<I> = —2pP.

Proof. Let (x!,x?) be local coordinates on ¥ so that 70,1 = 0,2, T0,2 = 0, and
consider the induced coordinates (', 22, z1/, x9/) on T*X. A straightforward calcu-
lation shows that the Ricci tensor of any nilpotent Riemannian extension gp & 7 18
determined by

P(041,0p1) = (02, Op2) + 2psD(azl s Op1),

the other components being zero. Hence the Ricci operator is nilpotent and gp o 7
has zero scalar curvature.

Moreover, the Ricci tensor vanishes if and only if ® (9,2, 0,2) +2p2 (941, 0,1) =
0. The result now follows. [

Remark 4.5. The Weyl tensor of a pseudo-Riemannian manifold is harmonic if and
only if div4 W vanishes. Let (2, D, T') be an affine surface equipped with a parallel
nilpotent (1,1)-tensor field 7" and let ® be a symmetric (0, 2)-tensor field on 3. Let
(z1, 22) be local coordinates on ¥ so that Td,1 = 0,2, T,2> = 0, and consider the
induced coordinates (2!, 22, 21/, zo/) on T*X. A straightforward calculation shows
that the divergence of the Weyl tensor of (7%, gp o 1) is given by

2(diV4 W) (8331 , Op2, 81,1) = {812 (13(8332, ax2) + 20,2 psD(axl , axl)},

the other components being zero. Hence (IT*X, gp o 1) has harmonic Weyl tensor
if and only if D® = —27) ® pP, where (X) = n(TX), 1 being the recurrence
one-form given in Equation|[(4.4)and DO®(X,Y;7Z) = D®(TX,TY;TZ).
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4.2.2 Gradient Ricci solitons on nilpotent Riemannian extensions

Recall from Theorem that the affine gradient Ricci soliton equation determines
the potential function of any self-dual gradient Ricci soliton which is not locally con-
formally flat, independently of the deformation tensor ®. The next theorem shows
that, in contrast with the previous situation, for any h € C*°(X) with dh(ker(T)) =
0, one may use the symmetric (0, 2)-tensor field Hesf +2p2 to determine a deforma-
tion tensor field ¢ so that the resulting nilpotent Riemannian extension is a Bach-flat
steady gradient Ricci soliton with potential function f = h o 7.

Theorem 4.6. Let (X, D,T) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let ® be a symmetric (0, 2)-tensor field on 3. Let h € C*°(X)
be a smooth function. Then (I*%, gp o1, f = h o 7) is a Bach-flat gradient Ricci
soliton if and only if dh(ker(T')) = 0 and

® = —Hes} —2pP . (4.6)
Moreover the soliton is steady and isotropic.

Proof. Let (2!, 2?) be local coordinates on ¥ so that 79,1 = 0,2, 79,2 = 0, and
consider the induced coordinates (x!, 2, 21/, 2o/) on T*X. Setting f = h o 7, one
has that Hes (9,1, 0z, ) + p(941, 0z,,) = Ag(0y1, 0z, ) leads to A = 0, which shows
that the soliton is steady. A straightforward calculation shows that the remaining
non-zero terms in the gradient Ricci soliton equation are given by

Hes (9,2, 8y2) + p(Oy2, Oy2) = Dyayah,

Hes (0,1, 0,2) + p(0y1,042) = 041 0,2h — PT1110,2h,

Hes(9p1,0,1) + p(041, 0p1) = 290 Opoh — PT112 02 h + 9,10, h — PT11 0 b
+ ®og + 20,2PT11% — 20,1 PTy !

It immediately follows from the equation (Hes¢ +p)(0,1,0,1) = 0 that 9,2h = 0,
which shows that dh(ker(7")) = 0. The only remaining equation now becomes

Hes (91, 0,1) + p(Dy1,0y1)
= 0310, h — PT11101h + ®ap + 20,2PT112 — 20,1 PTy3 !
= B(D,2,0,2) + HesP (9,1, 0,1) + 20P(0,1,0,1),
from which Equation [(4.6)| follows. Moreover, it also follows from the form of the
potential function that Vf = h'(2')8,,,, and thus ||V f[|* = 0 (equivalently, the

level hypersurfaces of the potential function are degenerate submanifolds of 7%Y0),
which shows that the soliton is isotropic. O
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Bach-flat isotropic gradient Ricci solitons

Remark 4.7. The potential functions of the gradient Ricci solitons in Theorem
are of the form f = h o7 for some h € C*°(X). Next we show that this is indeed the
case if the Ricci tensor of (X, D) is non-symmetric.

We consider (73, 9D.®.T, f) a gradient Ricci soliton with potential function
f € C®(T*Y). Take local coordinates (z', 22, 71/, 72) on T*Y as in the proof of
Theorem Since HeSf(awi,,amj,) = Og, Oy, f (2, 22,z xgr), it follows from
the expression of the Ricci tensor in Theorem and the metric tensor that
the potential function is determined by f = tX + h o m, for some h € C*°(X) and
some vector field X on ., where ¢ X is the evaluation map acting on X.

Further set X = A(x!,22)0,1 + B(x!, 2?)0,2 in the local coordinates (z', z2)
above, for some A, B € C>°(X). Then Hesf(0,2,0;,,) = 0,2 A(2!, 2?), from where
it follows that X = A(z')0,1 + B(z',2?)0,2. Considering Hesf(8,2,0,,,) =
—A"(z") 4+ 0,2 B(x!, %), one has that X = A(z")0,1 + (P(2') + 22A'(21))0,2
for some smooth function P(z'). Next the component

HeSf(axl,aa;z,) = A(xl)DPHQ — JZQ/A(Z‘I)
—|—DF111(P($1) —I—$2A’($1)) + P/(xl) +x2A//($1)

shows that A = 0 and it reduces to Hes;(0,1,0,,,) = P'(z') + P(zH)Prt A
solution P(z!) of the equation P’(2') + P(2!)PT'11' = 0 either vanishes identically
(and hence X = 0) or it is nowhere zero, in which case azQD I'i1! = 0 (see the
proof of Theorem [4.13). In the latter case Remark [4.3] shows that the Ricci tensor
of (3, D) is symmetric and thus recurrent of rank one. Theorem describes all
possible gradient Ricci solitons on (7%, gp ¢,7) Whenever pﬁg is non-zero.

Remark 4.8. The tensor field D;j;, = —2divy Wij + WiV f introduced in [36]
plays an essential role in analyzing the geometry of Bach-flat gradient Ricci solitons.
Local conformal flatness in [34,/36]] follows from ID = 0, which is obtained under
some natural assumptions.

Gradient Ricci solitons in Theorem satisfy Vf = h/(2')0,,,. Therefore, a
straightforward calculation shows that I is completely determined by

]Dlgl = —2h/($1)ax2 Dflll(xl,xz),

the other components being zero. Hence it follows from Remark that the tensor
field D vanishes if and only if the Ricci tensor p” is symmetric. However Theo-
rem shows that (7%, gp & 1) is never locally conformally flat.

4.3 Half conformally flat nilpotent Riemannian extensions

The existence of a null distribution U on a four-dimensional manifold (M, g) of
neutral signature defines a natural orientation on M: the one which, for any basis
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{u,v} of U, makes the bivector u A v self-dual (see [49]). We consider on T M
the orientation which agrees with U = ker(7,), and thus self-duality and anti-self-
duality are not interchangeable. The following result shows that they are essentially
different for nilpotent Riemannian extensions.

Theorem 4.9. Let (3, D,T) be an affine surface equipped with a parallel nilpotent
(1,1)-tensor field T. Then

(i) (T*%, gp,» 1) is never self-dual for any deformation tensor field ®.

(ii) If (T*%, gp,»,1) is anti-self-dual, then D is either a flat connection or (3, D)
is recurrent with symmetric Ricci tensor of rank one.

In the latter case there exist local coordinates (u',u®) where the only non-

zero Christoffel symbol is “T'11% and the tensor field T is given by TO,1 =
Oy2, TOy2 = 0. Moreover, (I3, gp &) is anti-self-dual if and only if the
symmetric (0, 2)-tensor field ® satisfies the equations:

—_

D® =25 ® pP,

0= 30 ®B(Dp1,0,1,051,0,1) +2(® @ pP) (841, 1, D1, D1 )
+ D2®(9,1, 013 Ty, TOy1 ) 4+ D2B(T D1, TDy; Oy, Oy )
—2D2®(0,1,TOy1; Ty, 0p1),

4.7)

where I/DE)(X, Y,Z) = D®(TX,TY;TZ), w is the recurrence one-form given
by DpP = w ® pP, and H(X) = w(TX).

Proof. A direct computation using the expression of the anti-self-dual curvature op-
erator of any four-dimensional Walker metric obtained in [51] shows that, for any
nilpotent Riemannian extension gp ¢ 7, W™ takes the form

-1
w-==-| o0
1

1
0 |, 4.8)
1

o O O

thus showing that the anti-self-dual Weyl curvature operator W~ is nilpotent and
hence (T, gp &,1) is never self-dual, which proves Assertion (i).

Next we show Assertion (ii). As a matter of notation we write J,s f = fs,
OprOgs f = frs. Let (M, g) be a four-dimensional Walker metric and set the met-
ric components gi1 = a, g12 = c and goo = b, where g;; are functions of the Walker

coordinates (x', 22 21/, xo/). Then the self-dual Weyl curvature operator takes the
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form (see [51]])
Wt = -Wi z -Wi : (4.9)

where
Wﬂ = %(60@1192 — 6a1byr — 6baicy + 12a1cy — 6cagby + 6agby
+ 6bascy + 6aq:by — 6agyby — 12a9:¢c1 + 6abico — 6abacy
+ 12bycyr — 12byrca — aq1 — 12¢ay; — 12bcary + 24caqy

(4.10)
— 3b%agy + 12basy — 12a99r — 3abyy + 12abiyr — bao
— 12by/1 4+ 12accyy — 2¢12 + 6abcio — 24cciyr — 12acq o
— 12bcoyr + 24c¢1/97),
and
Wi = i(—Qcan —bais + 2a19 + abia — 2by1 + aci1 — 2¢cio @in

— 2¢117 — begg + 2¢997)

Since any anti-self-dual metric is Bach-flat, we proceed as in the proof of Theo-
rem [4.1| considering local coordinates (x!, 2%) on the surface Y such that 7T is deter-
mined by 70,1 = 0,2 and 70,2 = 0. Since T is parallel, the Christoffel symbols

must satisfy:
D 1 Dp. 2 _Dp 1 Dp 1 D 2
Iy =0, “T'ie”="T11, 2o =0, Iy =0.

Next, we analyze the self-dual Weyl curvature operator, which is completely deter-
mined by the scalar curvature and its components Wf{ and ng already described
in Equations [(4.10)| and [(4.1T)] The scalar curvature is zero by Theorem 4.4] and
sz = —20,2PT'11!, from where it follows that the Ricci tensor p” is symmetric
of rank one and recurrent (see Remark . Take local coordinates (u',u?), as in
Remark [4.3] so that the only non-zero Christoffel symbol is “T'112 and 79,1 = 0,2,
T0,2 = 0. Finally, we compute the component WH given by Equation in the
coordinates (u', u?, uy/, uy ) of T*Y, obtaining

Wit = (0,2P20 + 20,20,2"T'112) uy — 3(Pa2)? — 20920,24T11>
— x2@22uF112 + 23I1 2P0 — 8:;:28952 b — 811 8301 Doy .

Thus (T*%, gp,o,7) is anti-self-dual if and only if
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8902(1)22 + 28352 x2uF112 =0,
5(P22)? + 20220,2"T112 + 9,2 P22 "T112
90,10, D19 — 020,28 11 — Dy1 Dy Do,

from where Equation follows. O

4.3.1 Anti-self-dual gradient Ricci solitons

Self-dual gradient Ricci solitons which are not locally conformally flat are described
in Theorem [I.27] In contrast, no explicit examples of strictly anti-self-dual gradient
Ricci solitons were previously reported. In this section we use nilpotent Riemannian
extensions to construct anti-self-dual isotropic gradient Ricci solitons. In this case,
Theorem 4.9 shows that (X, D) must have symmetric Ricci tensor.

Proposition 4.10. Ler (X, D, T, ®) be an affine surface with symmetric Ricci ten-
sor equipped with a parallel nilpotent (1, 1)-tensor field T' and a parallel symmetric
(0,2)-tensor field ®. Then (T*X, gp o 1) is anti-self-dual if and only if & = 0 and

~

& = 0, where w is the recurrence one-form given in Equation|(4.5)]

Proof. If the Ricci tensor p” is symmetric of rank one and ® is parallel, then the
equations in Theorem reduce to & = 0 and & = 0, which proves the result. If
(X, D) is a flat surface then a straightforward calculation shows that anti-self-duality
is equivalent to d=0, being P a parallel tensor. O

Since the deformation tensor ® of any gradient Ricci soliton in Theorem 4.6/ must
satisfy d=— HeshD —2pP . the condition ® = 0 in the previous proposition restricts
the consideration of Ricci solitons on (7%, gp & 1) to those originated by affine
gradient Ricci solitons on (3, D).

Proposition 4.11. Let (X, D, T) be an affine surface equipped with a parallel nilpo-
tent (1, 1)-tensor field T and let h € C*°(X). Then

(i) (X, D, T, h)is an affine gradient Ricci soliton with dh(ker(T')) = 0 if and only
if (I"%, 9, .1 f = homw) is a Bach-flat steady gradient Ricci soliton for any
symmetric (0, 2)-tensor field .

(ii) (3,D,T,h) is a non-flat affine gradient Ricci soliton with dh(ker(T")) = 0 if
and only if the recurrence one-form n given in Equation|(4.4)| satisfies 1 = 0.
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Proof. Since T is nilpotent, ®(TX,TY) = 0 for any (0,2)-tensor field ®. Hence
Equation [(4.6) shows that (T, g, 5 . f = h o) is a gradient Ricci soliton if and
only if (X, D, T, h) is an affine gradiént Ricci soliton with dh(ker(7")) = 0, which
shows Assertion (i). Next take local coordinates (!, 2?) on ¥ so that T9,1 = 0,2,
T2 = 0. Since p? = (0,2PT11%2 — 0,2PT'111)da! ® da' (see Remark , one
has

(HGSE —|—2p£)(8x2, 0y2) = 020,20 .

Thus h(z!, 2?) = 22 P(2') + Q(z) for some P, Q € C>(X). Hence dh(ker(T)) =
0 holds if and only if P = 0. Since h(x!,2?) = Q(z") one has that

(Hes}, +20.)(8,1,0,2) = 0,
and the only remaining equation is
0 = (Hesf, +2p2) (9,1, 0,1) = Q" +2(9,2PT11% — 9,.PT11 1)
= Q" +2p"(0,1,0,1).

Therefore, the integrability condition becomes 0,2 p” (9,1, 9,1) = 0

Hence, it follows from Equation[(4.4)|that (X, D, T, h) is an affine gradient Ricci
soliton with dh(ker(T")) = 0 if and only if the symmetric part of the Ricci tensor p2
is recurrent with recurrence one-form 7 satisfying n(ker(7")) = 0. Assertion (ii) now
follows. U

A direct application of previous propositions gives the desired examples.

Theorem 4.12. Let (X, D, T, ®) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1,1)-tensor field T and a parallel symmetric
(0, 2)-tensor field ®.

(i) (X, D, h) is an affine gradient Ricci soliton with dh(ker(T")) = 0 if and only
if (TS, 9, > f = h o) is an anti-self-dual steady gradient Ricci soliton
which is not locally conformally flat.

(ii) (X, D, h) is an affine gradient Ricci soliton with dh(ker(T)) = 0 if and only if
there exist local coordinates (u',u?) on X so that the only non-zero Christoffel
symbol is given by “T'112 = P(u!) +u%Q(u') and the potential function h(u')

is determined by h'' (u') = —2Q(u'), for any P,Q € C>®(%).

Proof. (T*% 9D &1 f = hom) is a gradient Ricci soliton by Proposition
(i). Anti-self- duahty now follows from Proposition 4.10] and Proposition {lﬂ 11),

showing Assertion (i).
Assertion (ii) follows from Proposition . TT}-(ii) and the expression of the recur-

rence form w in Equation Take local coordinates (u',u?) on ¥ as in the proof

128



4.4 Conformally Einstein nilpotent Riemannian extensions

of Proposition . TT}(ii). Then it follows from Equation [(4.5)| that & = 0 if and only
if 0,20,2T'11% = 0. Thus
"Ti’(u, u?) = Pul) +u*Q(u')

for some P, Q € C*°(X) and A" (u') = —2Q(u'). O

4.4 Conformally Einstein nilpotent Riemannian extensions

Since nilpotent Riemannian extensions are not weakly-generic (see the expression of
W~ in the proof of Theorem |4.9), we will analyze the conformally Einstein Equa-

tion [(L.6)}
1
(n —2)Hesy, +pp — ;{(n —2)Ap+T1}g =0,

seeking for solutions on nilpotent Riemannian extensions (7%, gp &.7).

Theorem 4.13. Let (X, D, T') be a torsion free affine surface equipped with a parallel
nilpotent (1,1)-tensor field T. Then any solution of Equation is of the form
@ = 1 X +¢om for some vector field X on 3 such that X € ker(T") and tr(DX) = 0.

Moreover (T*%, gp o 1) is conformally Einstein if and only if one of the follow-
ing holds:

(i) The conformally Einstein Equation [(1.6)|admits a solution ¢ = ¢ o for some
¢ € C>°(X) with dp(ker(T')) = 0, and the deformation tensor ® is determined
by ¢ @ + 2(Hes]) +¢ pP) = 0.

(ii) The conformally Einstein Equation admits a solution ¢ = 1 X + ¢om
for some ¢ € C*°(X) and some non-zero vector field X on X such that X €
ker(T") and tr(DX) = 0.

In this case, the Ricci tensor p® is symmetric of rank one and recurrent. More-
over there are local coordinates (u',u?) on ¥ so that

p(ut, u?, uy, uy) = ruy + ¢(u',u?)
is a solution of Equation if and only if
d$(TDy1) = B®(T0,1,T,),
Hes? (0,1, 0p1) + 6 pP (D1, 0,1)
= — 36+ 20" T112)®(T,1, T0,)

y {2(Dazl O)(T,1,0,1) — (szl@)(axl,axl)} .
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Proof. Let (2!, x?) be local coordinates on ¥ so that 70,1 = 0,2, 70,2 = 0, and
consider the induced coordinates (2!, 22, z1/, z9/) on T*3. Since T is parallel we
obtain directly from Equation[(4.T)]that

Prip't =0, P ="Tn', PIp'=0, "Iyp’=0.
In order to analyze the conformally Einstein Equation consider the symmet-
ric (0, 2)-tensor field £ = 2Hes, +¢pp — %{QAQO + ¢7}g and set £ = 0. Let
Eij = E(04i,0,i) and let ¢ € C°(T*X) be a solution of Equation [(T.6)] Then one
computes

E33 = 28:1:1/ 6.’171/(107 E3a = 26961/8232/ o, Eu= 2812/8:):2/ 2
to show that any solution of Equation must be of the form

50(1'17 £B2, Ty, x?’) = A(ajla 12)1'1’ + B(lJ? £B2)$2/ =+ ¢(x17 1'2)7 4.12)

for some smooth functions A, B and ¢ depending only on the coordinates (!, 22).
This shows that any solution of the conformally Einstein equation on (T*%, gp o 1)
is of the form ¢ = 1t X + v o 7, where ¢ X is the evaluation of a vector field X =
Ady + B0z on X, ¢p € C°(X) and 7 : T*Y — 3 is the projection.

Now, the conformally Einstein condition given in Equation[(T.6)can be expressed
in matrix form as follows:

E11 €12 8I1A — 8IzB Q(DFHQA + DFHlB + 89013 — Al‘g/)

x  Ex 20,2 A -0, A+ 0,2B
E=1 . . 0 0 (4.13)
* * * 0

where positions with * are not written since the matrix is symmetric, and where
E1 = —(0A—0,2B—4PT 11 A)a3,
+{APg + 2(0;1 0,1 A — PT1120,2 A
+ PT11'0,2B 4+ A9,2PT11? — BO,2PT'1it) by
—{B®gs + 2415 — 2(0,10,1 B + PT1120,1 A
—PIrito,a B + (0, PT1% — 2P 1 1PT12) A
+ (01 PTint = 2(PT11")?) B + 9,290) oy
+20,2 Axyrxy
— (01 A+ 0,2B)®1q 4+ 2(PT112A + PT11'B) @y
+(2PT112B + ¢) P9 — A9,1 @11 + BO,2 P11 — 2B, P1o + 20,1 0,19
—2PT111 0,10 — 2PT1120,200 — 2(0,1 PT11 ! — 0,2PT 1124,
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1o = 2(0,10,24 —PT1110,2A + A0 PT 1Y)y
+2(0,10,2B + PT11'0,1 A + A9,2PT'112)xo
— (01 A+ 0,2 B)®1g + 2PT111 BPoy — AD,2 P11 — BO,1 Poo
+20,10,29) — 2PT1110,29),

Ery = anz I2A$1/ + 2(81,283623 + 2A8IQDF]_11)SCQI
—(Qle + szB + 2DF111A)(I>22 — 2A8x2<1>12
+A0,1 Py — BO,2Pos + 20,20,27 .

First, we use the component £14 = 2(PT'1124 4+ PT'1'B + 0,1 B — Azy) in
Equation note that 0., €14 = —2A, and therefore A(z',2?) = 0, which
shows that X € ker(7"). Now component &3 in Equation gives 0,2B = 0,
which implies B(z!,2?) = P(z') for some smooth function P depending only on
the coordinate 1, i.e., the vector field X = B0, satisfies tr(DX) = 0.

At this point, the conformal function ¢ has the coordinate expression

QO(.Tl,.’,IIQ,JZl/,.’JIQ/) = P(xl)xT + w(l’l?mQ)

and the possible non-zero components in Equation are £11, 12, £99 and E14.
Considering the component £14 = 2(P'(x') 4+ PTy1 (2!, 22) P(z1)), we distinguish
two cases depending on whether the function P vanishes identically or not. Indeed,
if P(x!) is a solution of the equation 14 = 0, then

O (P(at)el Prust et a?yas)
— efDFul(zl’zQ)dzl {P’(xl) + P(xl)DF111<$1,l’2)} =0,
which shows that
P(at)el Pt @heint — g(y?)

for some smooth function Q(z2). Now, if the function Q(z?) vanishes at some point,
then P(x!) = 0 at each point. Otherwise, if Q(x?) # 0 at each point, so is P(x!).

First, suppose that P(z!) = 0, and hence ¢ = v o . In this case, component oz
in Equation [(4.13)]yields 0,20,2¢ = 0, which implies 1 (2!, 2?) = Q(x!)2?+¢(z1)
for some smooth functions () and ¢ depending only on the coordinate z-'. Now, the
only components in Equation which could be non-null are

&l = 2Qmy + (QPa2 +2Q" — 2PT111Q" — 2(0,, PT1it — 9,2PT112)Q)2?
+¢Po2 +2¢" = 2PT111¢ = 2(0, PT1i' — 8,2PT1i%)9 — 2PT11%Q,
&2 = 2(Q -"Tiu'Q).
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Now, 9;,,&11 = 2Q), implies Q = 0, thus showing that dy(ker(7)) = 0. Then
&12 = 0 and the component £1; reduces to

511 = ¢‘I)22 + Q(ﬁ” -2 DF111¢/ — 2(8:61DF111 — 8$2DF112)¢.

Since p(x!, 22, 21/, 29/) = $(x'), ¢ must be non-null and we obtain that &1 = 0 is
equivalent to

Poy = —% {¢ — PT11'¢) — (0,111t — 0,2PT112) ¢}
= _% {Hesg(8mlaaxl) +¢psD(8mla8:vl)} 5
from where Assertion (i) is obtained.

Finally, we analyze the case in which the function P(x') does not vanish identi-
cally. Since £14 = 2(P'(x') + P11 (2!, 22) P(2')), we have 0,2PT11' = 0. Now
it follows that the Ricci tensor p” is symmetric of rank one and recurrent (see Re-
mark . Specialize the local coordinates (u',u?) on ¥ so that the only non-zero
Christoffel symbol of D is “I'112(u!,u?) and 79,1 = 0,2, T9,2 = 0. Then any
solution of the conformally Einstein equation takes the form

gp(ul’ u27 uyr, u?’) = A(UI)UT + ¢(u1’ u2) :

Now, considering the component £,; of the conformally Einstein equation in the new
coordinates (u!,u?), one has £y; = 24" (u'), which shows that p(ul, u? uyr, ug) =
pay + ¢(ut, u?) for some p # 0. Considering now the component

£ = (20,20 — pu®a2)uy + 20,10, ¢ — 20,2¢"T11?
+ 2¢0,2 T 112 + ¢pPog + 2uP20"T'112 + 0,2 P11 — 2105 D1,
it follows that the conformally Einstein equation reduces to
pPo2 = 20,29,
(¢+2u"T1?) P = —2(Hes] (0,1,0,1) + dpP (0,1,0,0))
+1(20,1 P12 — Op2P11),

from where Assertion (ii) is obtained. ]

4.5 Examples

4.5.1 Nilpotent Riemannian extensions with flat base

Let (X, D) be a flat torsion free affine surface. Take local coordinates on ¥ so
that all Christoffel symbols vanish. Let T be a parallel nilpotent (1, 1)-tensor field.
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Since T is parallel, its components T7; are necessarily constant on the given coor-
dinates. Hence one may further specialize the local coordinates (z!, 22), by using a
linear transformation, so that 70,1 = 0,2, 70,2 = 0 and all the Christoffel sym-
bols PT';;* remain identically zero. Now Theorem {1/ shows that (T*%, gp o 1) is
Bach-flat for any symmetric (0, 2)-tensor field ® on ¥. Moreover it follows from
Theorem that (T*Y,gp.o 1, f = h o) is a steady gradient Ricci soliton for
any h € C>®(X) with dh o T = 0 and any symmetric (0,2)-tensor field  such
that ®o9(z!,2%) = —h"(2'). Further note from Remark [4.8| that the steady gra-
dient Ricci soliton (7%, gp o1, f = h o m) satisfies D = 0. Moreover, since
gy = —h"(z'), one has that (T*%, gp ¢.r) is in the conformal class of an Ein-
stein metric (just considering the conformal metric g = (;5_29[)7@7’_]“ determined by
the equation ¢ (z') — 2¢(z')n” (z') = 0).

Remark 4.14. Set ¥ = R? with usual coordinates (x!,2?) and put 79,1 = 9,2,
Td,> = 0. For any smooth function h(x!) consider the deformation tensor ® given
by ®ao(zt, 22) = —h"(x!) (the other components being zero). Then, the non-zero
Christoffel symbols of gp o 7 are given by

’

!/ /! / 1
1% = —xy = Tt T? = -0 (Y2, Tp? = _§h(3)($1) = —Tg!

Hence a curve y(t) = (2! (t), 2%(t), 71/ (t), v (t)) is a geodesic if and only if

#(t) =0, B2 (t) — xo(t) &' (1) =0,
By (t) + 2wy () & (8)d (1) + 5 D) (2 (1) 22(1)? = 0,
By () — (2 (1)) woy (8) &1 (8)2 — W) (2! (1)) &1 (1) #(t) = 0.

Thus 2! (¢) = at + b for some a,b € R and
#2(t) — a?wy(t) =0,
(t) — h'(at + b) a® zo (t) — B (at + b) ai(t) = 0,
fi’ll(t) + 2a 5[,‘2/(t) j}z/ (t) + % h(3)(at + b) iQ (t)2 =0.

Tor

Now the first two equations above are linear and thus z:%(¢) and xo/(t) are globally
defined. Finally, since i1/(t) + 2a 2o/ () 2 (t) + 3 A (at + b) i2(t)? = 0 is also
linear on x1/(t), one has that geodesics are globally defined.

Then it follows from Theorem that (T*R?, gp,o1, [ = hom)isa geodesi-
cally complete steady gradient Ricci soliton, which is conformally Einstein by Theo-

rem[4.131
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4.5.2 Nilpotent Riemannian extensions with non-recurrent base

Let (T*%, gp.a,1, f = h o ) be a non-trivial Bach-flat steady gradient Ricci soliton
as in Theorem |4.6| Further assume that the Ricci tensor p” is non-symmetric, i.e.,
pﬁc # 0 (equivalently, 92Ty # 0 as shown in Remark. Then it follows from
Theorem [4.9)that (T*X, gp o) is not half conformally flat.

Theorem shows that (77X, gp & 1) is conformally Einstein if and only if
there exists a positive ¢ € C*°(X) with d¢ o T' = 0 such that

¢ ® + 2(HesD +¢pP) = 0.
Therefore, it follows from Theorem that Hes? = % Hesg , which means (2% —

R)PTy b = 2%/ — h". Taking derivatives with respect to 22 and, since 0,2°T'1;! #
0, the equation above splits into

2;5,—}/:0 and 2;”

which only admits constant solutions. Summarizing the above one has the following:
Let (3,D,T) be an affine surface with non-symmetric Ricci tensor (i.e., pﬁc # 0).
Then any Bach-flat gradient Ricci soliton (T*%, gp o1, f = h o ) is neither half
conformally flat nor conformally Einstein.

_h// :07
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Chapter 5
Parallel tensors on affine surfaces

Motivated by the results in Chapter ] one is interested in the existence of affine
surfaces admitting a parallel tensor of type (1,1) which is nilpotent and their explicit
description. It is important to emphasize that any parallel tensor decomposes as an
scalar multiple of the identity plus a trace free part. In consequence, one can reduce
the problem and restrict the study to trace free parallel tensor fields.

We say that (X, D, T) is a Kiihler surface if T is a complex structure (72 = — Id)
and DT = 0. If the parallel tensor field is a para-complex structure (72 = Id), then
(X, D, T) is called para-Kdhler. Finally (X, D, T) is said to be nilpotent Kdihler if
T is a nilpotent parallel tensor field of type (1,1). Let (X, D) be an affine surface
with the skew-symmetric Ricci tensor ,03C # 0. Then ch defines a volume element.
Furthermore, ch is recurrent, i.e., ngC =w® pgg. The symmetric Ricci tensor is
not recurrent in general. We will prove the following result in Section[5.2]

Theorem 5.1. Let (X, D) be a simply connected affine surface with p? # 0.

(i) (3, D) admits a Kdahler structure if and only if det(p?) > 0 and p? is recur-
rent.

(ii) (X, D) admits a para-Kdhler structure if and only if det(p?) < 0 and p? is
recurrent.

(iii) (X, D) admits a nilpotent Kiéihler structure if and only if p? is of rank one and
recurrent.

Affine surfaces admitting a trace free parallel (1,1)-tensor field have appeared in
the literature in several contexts.

(1) Affine surfaces with parallel shape operator have been investigated in [69],
where it is shown that any such surface is either an equiaffine sphere or the
shape operator is two-step nilpotent, thus corresponding to Case (iii) above.

(2) Let (3, D) be an affine surface equipped with a parallel volume form 2. Since
d) = 0 and D2 = 0, there is a notion of symplectic sectional curvature
(see [56]).
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A symplectic surface (2, D, ) has zero symplectic sectional curvature if and
only if the Q-Ricci operator Q(Ric?(X),Y) = p”(X,Y) is a nilpotent Kihler
structure. Furthermore the symplectic sectional curvature is positive definite
(resp. negative definite) if and only if Ric is a Kihler (resp. para-Kihler)
structure [56].

This chapter is organized as follows. In section[5.1]we study the relation between
parallel tensors and the Ricci tensor as well as the dimension of the spaces of par-
allel tensors. The proof of the Theorem [5.1]is given in Section [5.2] In Section [5.3]
we analyze the existence of parallel (1,1)-tensor fields on the Type A and Type B
homogeneous surfaces. In this chapter we report on work investigated in [30].

5.1 The space of parallel tensor fields on a surface

Let (X, D) be an affine surface and let (2!, 22) be a system of local coordinates on
. Let 7T be a tensor field of type (1,1). Expand T = T%;0,: ® dx’. We say that T'
is parallel if DT = 0. Let P(X, D) be the set of parallel tensors of type (1,1) on
(X, D):

P(X,D) = {T%; : 0T + PTyt T — PTy, T = 0, forall 4,j,k}.
Let tr(T) := T%; be the trace of the endomorphism. Let
PUS, D) := {T € P(%,D) : tr(T) = 0}

be the space of trace free parallel tensors of type (1,1). If T € P(X, D), tr(T) is
constant and expressing 7 = 1 tr(7) Id +(7 — 3 tr(T") Id) decomposes

P(%,D)=1d-RePZ, D).

If 0 # T € P°(, D), then the eigenvalues of T" are {+\} so tr(T?) = 22, If
2)\2 < 0 (resp. 2A\? > 0), we can rescale T so T2 = —1Id (resp. 72 = Id) and T
defines a Kéhler (resp. para-Kéhler) structure on 3J; the almost complex (resp. almost
para-complex) structure being integrable as X is a surface [44}[85]]. Finally, if A = 0,
then T is nilpotent and defines what we will call a nilpotent Kdihler structure.

Lemma 5.2. If (X, D) is a connected affine surface, then P(X, D) is a unital algebra
with dim(P(X, D)) < 4. Let T' € P(X, D). The eigenvalues of T are constant on
3. If T vanishes at any point of %5, then T’ vanishes identically.
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Proof. Let Ms(IF) be the unital algebra of 2 x 2 matrices with entries in a field F
and let M3(F) C My (F) be the linear subspace of trace free matrices. The sum and
product of parallel tensors of type (1,1) is again parallel. Since Id = (& ;) is parallel,
P(X, D) is a unital algebra. Fix a point p € X. Since ¥ is connected, a parallel tensor
is defined by its value at a single point. Thus the map 7" — T'(p) is a unital algebra
homomorphism which embeds P (3, D) into Ms(R) relative to the coordinate basis.
Thus P (X, D) has dimension at most 4. Let T € P(X, D). Since d{tr(T)} =
tr(DT) = 0, tr(T) is constant. By replacing 7' by T — 1 tr(T') Id, we may assume
that T € P(X, D) is trace free. The eigenvalues of T are then {\(p), —A(p)} so
tr(T?) = 2)\%(p). Since T? is parallel, this implies A?(-) is constant and hence the
eigenvalues themselves are constant. O

The symmetric Ricci tensor plays a crucial role. The proof of the following the-
orem will be obtained in this section after a case by case analysis.

Theorem 5.3. Let (X, D) be a simply connected affine surface.
(i) If dim(PY(X, D)) = 1, then exactly one of the following possibilities holds:

(a) (X, D) admits a Kdhler structure and Rank(p?) = 2.
(b) (X, D) admits a para-Kihler structure and Rank(p?) = 2.
(c) (X, D) admits a nilpotent Kiihler structure and Rank(p?) = 1.

(ii) dim(P%(%, D)) # 2.

(iii) dim(P°(X, D)) = 3 ifand only if pP = 0. This implies (X, D) admits Khler;
para-Kdahler, and nilpotent Kdhler structures.

Generically, of course, dim(P%(3, D)) = 0. Furthermore, there exist examples
with Rank(p?) = 1 (resp. Rank(p?) = 2) where dim(P°(X, D)) = 0 as we shall
show in Remark (resp. Remark [5.13). What is somewhat surprising is that the
existence of parallel (1, 1)-tensor fields is completely characterized by the geometry
of the symmetric part of the Ricci tensor p2.

Let T" be a tensor of type (1,1) on a smooth surface 3 such that the eigenvalues
of T are constant; this is equivalent, of course, to assuming either that tr(7") and
tr(7?) are constant on Y. or that tr(7") and det(7) are constant on Y. By subtracting
a suitable multiple of the identity from 7', we can assume 71 is trace free. We have
the following useful observation.

Lemma 5.4. Let 0 # T be a trace free tensor of type (1,1) on an affine surface %
with det(T") € {0, +1}.

137



Parallel tensors on affine surfaces

= 0, we can choose local coordinates so T = 0,1 ® da?.

(i) If det(T)
(ii) Ifdet(T) = 1, we can choose local coordinates so T = 0,2 @ dx' — 0,1 @ dx®.
(iii) Ifdet(T) = —1, we can choose local coordinates so T = O @dx' —0,2 @dx?.

Proof. Let 0 # T be nilpotent. Let Y7 be a non-zero vector field which is defined
locally so that TY; # 0. Then Y := T'Y; spans ker(7"). Choose local coordinates
(y*,y?) so that Yo = 9,2. Then T9, is a non-zero multiple of 0,2, i.e., T, =
fO,2. Let X1 = 0,1 + 90,2 and X2 = f0,2 where g remains to be determined. Then
TX; = Xo. We have [X1, Xo] = (00 f + 90,2 f — f0,29)0,2. Solve the ODE

Oy29(y',y?) = fHOuf + 90,2 f} with g(y',0)=0.

This ensures [ X1, Xo] = 0. Since { X1, X2} are linearly independent, we can choose
local coordinates (x',2?) so 9,1 = X; and 0,2 = X5. We then have 70,1 = 0,2
and T9,> = 0; Assertion (i) follows after interchanging the roles of 2! and x2.

If det(T) = 1, then T? = — Id and T defines an almost complex structure. Since
> is a surface, the Nirenberg-Newlander Theorem [85] shows that we can choose
local coordinates so 70,1 = 0,2 and 70,2 = —0,1. Assertion (ii) now follows.

Let det(T") = —1. Then T2 = Id and T defines an almost para-complex struc-
ture. Since we are in dimension 2, the para-complex structure is integrable and we can
choose local coordinates so 70,1 = 0,1 and 70,2 = —0,2 (see for example [44]).
Assertion (iii) follows. O

The proof of Theorem follows after a case by case analysis of the different
local forms in Lemma [5.4] First, we consider the existence of parallel tensor fields
on affine surfaces with skew-symmetric Ricci tensor. After that, we will analyze
nilpotent Kahler structures, Kihler structures and para-Kéhler structures.

The case of skew-symmetric Ricci tensor
Lemma 5.5. Let (X, D) be an affine surface which is not flat.
(i) pP =0 if and only if there is a coordinate atlas with locally defined ¢ so:

Priut=0, Pri?=0, DTt = 0,10,

5.1
DF122 =0, DF221 = 0,20, DF222 =0,0p.

(ii) If Equation|[(5.1)| holds, then pP = —0,10,1p dz* A dx?, and

reo{(0a) (0 7)- (7 7))
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5.1 The space of parallel tensor fields on a surface

Proof. Suppose p? = 0. Fix a local basis {e1, e} for T,X. Let o(t) := exp,(tea).
Extend e; along o to be parallel and let W(s,t) := exp,(se1(t)). This gives a
system of local coordinates where Dy, 0;|s=0 = 0, Dy,0s|s=0 = 0, Dy, 05 = 0, i.e.,
PTy!(0,2%) =0, PIp?(0,2%) =0, Prip'(0,2%) =0,
PTp2(0,2%) =0, PTit(a!,2?) =0, PTu?(z!,2?) =0.
We have 0 = pgll = —(PT19%)? — 9,,PT'15% = 0. Since PTI'152(0,2%) = 0, this
ODE implies PT'15? = 0. Setting pZ}, = 0 then yields 9,1{"T'12" — PT'p?} = 0.
Since PT121(0,22) = 0 and PT'922(0,2%) = 0, we conclude PT15! = PT'992. Set-
ting p£22 = 0 yields —0,2PT992 + 9,1PT22' = 0. Consequently, PT'95? = 9,1
and PT'go! = 9,24 for some smooth function . This yields the relations of Equa-
tion[(5.1)] Conversely, if Equation [(5.1)| holds, then a direct computation shows that
pP = 0 and that the three endomorphisms of Assertion (ii) are parallel. Since these

endomorphisms are linearly independent and dim(P%(3, D)) < 3, Assertion (ii)
holds. O

The case of nilpotent Kéhler structures

Lemma 5.6. Let (X, D) be an affine surface which is not flat.

(i) If (¥, D) admits a nilpotent Kiihler structure, there is a coordinate atlas so

Prypt =0, Pri?=0, PTrp?=0, Pry®="T'. (5.2)

(ii) If Equation[(5.2)| holds, then pP = (0,1PT" — 0,2PT12") da? ® da? and
T =0, ®dx? € PO, D).

(iii) If Equation[(5.2) holds and if dim(P° (X, D)) > 2, then
Prigt=—8,.¢ and PTyp! = —0,21 (5.3)
for some smooth function ).

(iv) If Equations|[(5.2)and [(5.3) hold, then pP = 8,1 0,1%) dx' A dx? and

0 1 U L -2
pO(EjD):ﬂ)&H{(O O)’( 1 — >’<0 -1 )}

Proof. Let0 # T € P°(%, D) be nilpotent. By Lemma we may choose coordi-
nates so T' = 0,1 ® dz?. Setting DT = 0 yields the following relations from which

139



Parallel tensors on affine surfaces

Equation [(5.2)|follows (see also [33]]):

5 T_O —DF112 Drlll_DF122 B 0 0
Ot — T 0 Dp, 2 Lo o)

Do T—0- —DPrp? Prypl — PTgy? (00
2" = F 0 DTp52 “lo o/

Assume Equation holds. A direct computation establishes Assertion (ii).
To prove Assertion (iii), assume in addition that dim(P°(X, D)) > 2 and choose
S € PY(%, D) so S and T are linearly independent. We must establish the relations

of Equation

Case 1:
Suppose that S is nilpotent. Express

Sty Sk 0 SY
S = ;o ST = .
( S2 -8ty )7 0 S%

Since ST € P(%, D), tr(ST) = S?; is constant. Thus S?; = ¢ for ¢ € R and

g_ Sty Sk
& —511 ’

If ¢ = 0, then det(S) = —(5'1)? = 0 implies S'; = 0s0 S = S'5 T Since S and
T are parallel, dS'y = 0so S'y € R and S and T are linearly dependent contrary
to our assumption. Thus ¢ # 0 and we may rescale S to assume ¢ = 1. Setting
det(S) = 0 yields S'y = —(S11)? so

o Sll _(511)2
1 =S4y '

We compute the covariant derivative DS = S° jikOgi @ dz’ ® O, where the compo-
nents Szj;k = Bkalj _i_Derzslj — DijESlg toget0 = 522;1 = —DF121 — 6361511

and 0 = S%9 = —PTy! — 9,25, This yields the additional relations given in
Equation[(5.3)]
Case 2:

Suppose that S is not nilpotent. The map S — S(p) is an algebra morphism
which embeds P(%, D) in Ma(R). Consequently, if dim(P°(%, D)) = 3, then
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5.1 The space of parallel tensor fields on a surface

dim(P(X, D)) = 4 and P(X, D) contains a linearly independent nilpotent element
S € P(X,D) and the argument given in Case 1 pertains. We therefore assume
dim(P(X, D)) = 3 and that any nilpotent element of P(3, D) is a constant multiple

of T'. Express
st Sh 01
S = and T = .
( 5% =S54 0 0
0S4
ST = :
As ST is parallel, tr(ST') = S?; is constant so S?; = ¢ for some constant ¢ and

_c 511 CSll _(511)2
T—<1d = 2 TS = :
ST —$1d (0 C>,SS <C2 st

We compute

2

Since dim(P°(X, D)) = 2, there must exist a non-trivial real dependence relation of
the form 0 = a1 T + ao(ST — §1d) + a3zST'S, i.e.,

0 0 B —%azc—i-achll a1+a2511 —a3(511)2
00) azc? %agc — azeShy '
If ¢ # 0, the relation asc®> =0 implies a3 = 0. The relation %agc —azcS' = 0 then

implies az = 0. And then finally the relation a; + a2S'; — a3(S'1)? = 0 implies
a1 = 0. Thus ¢ = 0 so we have

s, s, 0 1
S: T: .
< 0o -S4 )’ 00

Since the eigenvalues of S are constant, S'; is constant as well. If S; = 0, then
DS = 0 implies S's € R and hence S and T are not linearly independent. Thus

we may assume S’y = 1. We set Sy = —2¢). Setting DS = 0 then shows that
PTy9t = —0,19 and PTye! = —0,29 which yields, as desired, Equation[(5.3)
Assertion (iv) follows by a direct computation. O

The case of Kihler structures
Lemma 5.7. Let (X, D) be an affine surface which is not flat.
(i) If (X, D) admits a Kdhler structure, then there is a coordinate atlas so

Pr b =P1p2 = —PTypt, Prpp? = Pyt = Py, (5.4)
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(ii) If Equation holds, then

10
,OSD = (8332DF112 — 81,1DF111) ( 0 1 )

and
T = ( (1) _01 ) e P'(%, D).
(iii) If Equation[(5.4) holds and if dim(P°(X, D)) > 2, there exists smooth 1) so
Pry !t = % 2 and PTip? = %8361@1}- (5.5)
(iv) If Equations and hold, then

1
,OD = 5(8351 o1+ 020,29 da' A da?

0 B 0 -1 cosy  —siny
P(E,D)-span{(l 0 >’(—sinw —cos.w>7

siny  cosy
cosy —siny ’

Proof. Suppose T' € P°(3, D) satisfies T? = —Id. By Lemma we can choose
local coordinates so T = 0,2 ®dx! — 9,1 @dz?. Setting DT = 0 yields the relations:

and

Dy T=0: Pry2 4+ Pl —Prygt 4 Pryp? _ 0 0

Gt T —Pryt + Prp? —Pry? — Pryg! B 00 )’
Dy . T=0: PT19% + PTgpt =PIyt + PIyg? B 00

O2 = W —DT ot + PTgp?  —PTyp? — Pyt B 00 )"

These relations establish Equation A direct computation establishes Asser-
tion (ii). Suppose dim(P(X, D)) > 3. Choose S € P°(%, D) to be linearly inde-
pendent of T'. Express

511 512 0 -1 Sll 512 — &
S = T= S+el = .
( 521 —511 ’ 1 0 ’ te 521 +e —511
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5.1 The space of parallel tensor fields on a surface

We have det(S +¢eT) = 2 +(5% — S13) — (S*1)? — 52,915, We use the quadratic
formula to solve the equation det(S + £7T") = 0 setting:

e = % {(Slg — 321) + \/(512 + 521)2 + 4(511)2} .
Since S and T" are assumed linearly independent, S + 7" is a non-trivial nilpotent
element. We can then apply Lemma and Assertion (ii) to see p? = 0 and derive

the relations of Equation[(3.5)] This proves Assertion (iii); Assertion (iv) follows by
a direct computation. O

The case of para-Kiihler structures

Lemma 5.8. Let (X, D) be an affine surface which is not flat.

(i) If (X, D) admits a para-Kdiihler structure, then there is a coordinate atlas so

Prii2=0, Pript=0, PTp?=0, Pry'=0. (5.6)

(ii) If Equation holds, then

and

1 0 1
pl = *5(812131111 + 0,1PT99?) < 10 > .

(iii) If Equation [(5.6)| holds and if dim(P°(X, D)) > 2, then there exists a locally
defined smooth function 0 such that

Prift =0,.0 and PTy?=—-0,0. (5.7)

(iv) If Equations|(5.6) and hold, then pP = 0,10,20 dx' A dz* and

PO(E,D):span{<(1) _01>,e_0<8 (1]>,60<(1) 8)}

Proof. Let T € P°(%, D) satisfy T? = Id. We apply Lemma to see we may
choose local coordinates so T' = 9,1 ® dz' — 0,2 ® dx?. Setting DT = 0 yields the
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Do T—0. 0 —2Prpt) 00
O™ T 2012 0 N 0o o0/’
Dy T—0. 0 —2PIpt ) 0 0
925 =7 | 9Dp,2 0 - 00"

This yields Equation [(5.6)} Suppose dim(P%(%, D)) > 2. If dim(P°(%, D)) = 3,
then P°(X, D) contains a nilpotent element and we may apply Lemma to con-
clude pP = 0 and Assertion (ii) gives the relations of Equation for suitably
chosen . We therefore suppose dim(P%(2, D)) = 2. Let {S, T} be linearly inde-
pendent elements of P°(X, D). Expand

Sty St 1 0 sl —Sl,
S = T = ST = .
( S2, =8t )7 0o -1/’ s2, sy

Since tr(ST) = 25", is constant, we obtain S is constant. Define S=5-84T.
Then S is parallel and S # 0 since S and T are linearly independent. We then have

a 0 Sh 1 0 5 0 -Sh
S = , T = , ST = .
( S% 0 > < 0 -1 ) S? 0
Since S + ST are nilpotent and not both are zero, P(X, D) contains a non-trivial

nilpotent element and we can use Lemma|5.6|to conclude p? = 0 and Assertion (ii)
establishes Assertion (iii). Assertion (iv) follows by a direct computation. ]

relations

5.2 Characterization of affine surfaces admitting parallel
tensor fields
The purpose of this section is to prove Theorem 5.1} which characterizes the existence

of parallel tensor fields by the recurrence of the symmetric part of the Ricci tensor.
We recall the result for the convenience of the reader.

Theorem Let (X, D) be a simply connected affine surface with pP # 0.

(i) (2, D) admits a Kdihler structure if and only if det(p?) > 0 and pP is recur-
rent.

(ii) (X, D) admits a para-Kihler structure if and only if det(p?) < 0 and pP is
recurrent.
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5.2 Characterization of affine surfaces admitting parallel tensor fields

(iii) (X, D) admits a nilpotent Kdhler structure if and only if pSD is of rank one and
recurrent.

Proof.

Assertion (i). Let (X, D) be an affine surface with p? # 0 admitting a Kihler struc-
ture. Take local coordinates as in Lemma Then the relations in Equation
show that det(p?) > 0 and p? is recurrent, i.e., Dp? = w @ pP with

w=—(2"T1" = Oplog pPyy) da' — (2PT11® — 8,2 log pllay) da?.

Conversely, if p? is recurrent and det(p?) > 0, there exist local coordinates (!, 22)
so that pP = (x!, 2?) (dz' ® dz' + dr? @ dx?) (see for example Theorem 3.2
in [[104]). Now a straightforward calculation using Dp? = w® pP gives the relations
of Equation and thus Assertion (ii) in Lemma/[5.7)shows that (X, D) is Kéhler.

Assertion (ii). Let (3, D) be an affine surface with p? # 0 admitting a para-Kihler
structure. Take local coordinates as in Lemma Then the relations in Equa-
tion[(5.6)] show that det(p?) < 0 and p? is recurrent, i.e., Dp? = w @ pP with

W = —(DF111 — Ozl log p£12) da:l - (DFQQZ - axz log p£12) dx2 .

Conversely, if p? is recurrent and det(p?) < 0, there exist local coordinates (z!, x2)
so that pP = ¥(z!,2?) (dz' ® da? + dr? @ dx') (see for example Theorem 3.2
in [[104]). Now a straightforward calculation using Dp? = w® pP gives the relations
of Equation and thus Assertion (ii) in Lemma [5.8| shows that (2, D) admits a
para-Kéhler structure.

Assertion (iii). Let (X, D) be an affine surface with p? # 0. Assume (3, D) admits
a nilpotent Kihler structure. Take adapted coordinates as in Lemma [5.6] so that the
Christoffel symbols are given by the relations in Equation[(5.2)} Then pZ is recurrent
of rank one with recurrence 1-form given by

w = 0,1 log p£22 dz' — (2PT15' — 9,2 log ,0222) da? .

Conversely, let (¥, D) be a recurrent affine surface with Rank(p?) = 1. Take local
coordinates (z!,22) so that ker(p?) = span{0,1} (see Theorem 4.1 in [[104]). If
pY = plopda® © da?, a straightforward calculation shows that Dp? = w ® pf for
some 1-form w if and only if DT112 = 0 and PT'122 = 0. Furthermore, one has

pPig = 5 (0 (PT1at — PT?) — 9,271y t) pP =0,

0522 = DT111PT90! + PIyp!t (P2 — PTyat) + 9,1 P! — 9,2PT51
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Parallel tensors on affine surfaces

Since p£12 = 0 one has the additional relation

Dflll = ,u,(ﬂ?l) + /8331 (DF121 - DF222) dl?z .

Change the coordinates as (u', u?) = (2! + a(x!), 2?) so that

dut = (1+d)dzt,  du®= da?,
Oyt = (1+a) 10,1, Op2=0,.
Now, one has that
ubp 12— uDPpL,2—( uPp,l—eDp,l uDp,,2 _aDp,,2

and
1 a”(l‘l)
uD 1 xD 1
F = — F N N A—
RS ( B+ af(scl)

1 1 a” (! uD uD
= MW(M(x ) m /8‘%1 F 2 — F22 )dx

B 1 a//(xl)
= T ()~ 1)

1
+ : - a/(xl)/azl ('LLDF121 o UDF222) d$2

1 1 D Dy 2\ o 2
- u Ty =41 du” .
1+ a/(z?) (M($ )= 1 + a'( ZL‘I > /aul 22") du

Hence choosing a(z1) to be a solution of a” — pa’ — 1 = 0 one may assume that
DFHl = /8331 (Drlgl - DF222) d:l?2 .
Let T = T'5 0,1 ® dx? be a nilpotent tensor field on (X, D). Then T is parallel
if and only if
T12;2 = 8332T12 + (DF121 - DF222)T12 =0 and
Tl = 0uT's + THP T = 0.
Dp. 1 _ Dp.2Y,7,2
Use the equation T12;2 —QOandset Ty = e~ J(PT1gt = PTap%)de . Then
Ty = 0Tl +THPTI!
Dp. 1 _ Dp._2Y7,2
e J(PTiot — Prop?)dx (—8501 [(PTya! — PTyy?)da? + Drlll)
= 0,

thus showing that 7" is a nilpotent Kéhler structure. O
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Remark 5.9. Let (X, D) be a simply connected affine surface with Rank(p?) = 1.
The following conditions are equivalent:

(i) The symmetric part of the Ricci tensor is recurrent: Dp? = w @ pP.

(i1) The kernel of the symmetric part of the Ricci tensor is a parallel distribution:
Dker(pP) C ker(pD).

(iii) The kernel of p? is spanned by a recurrent vector field: ker(p?) = span{X}
and DX =n® X.

Consequently, if p? has rank one and if ker(p?) is parallel, then the affine surface
admits a nilpotent Kihler structure (see for example [89]).

Indeed, assume that Rank(p?) = 1. Choose local coordinates so that the sym-
metric Ricci tensor has the form p? = p£22dac2 ®dx?. A straightforward calculation
shows that any of the conditions of the observation is equivalent to the condition
P12 = Prp? =0.

5.3 Parallel tensor fields on homogeneous surfaces

Homogeneous surfaces were discussed in Chapter [} For the convenience of the
reader, we recall the following result of Opozda [90]. It is fundamental in the subject.

Theorem Let (3, D) be a locally homogeneous affine surface which is not flat.
Then at least one of the following three possibilities holds which describe the local
geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols D Fijk are
constant.

(B) There exists a coordinate atlas such that the Christoffel symbols have the form
Drijk — (ZEI)_ICijk
for Cijk constant and x* > 0.

(C) D is the Levi-Civita connection of a metric of constant Gauss curvature.

Homogeneous Type C surfaces have symmetric and parallel Ricci tensor, which
is a multiple of the metric. Hence any such surface admits either a Kihler or a para-
Kihler structure, depending on the signature of the metric.

In what remains of this chapter we analyze the existence of parallel (1, 1)-tensor
fields on the other two types of homogeneous surfaces.
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5.3.1 Parallel tensor fields on Type .4 homogeneous surfaces

The Ricci tensor of any Type .4 homogeneous model is symmetric. Furthermore,
the Ricci tensor is recurrent if and only if it is of rank one (see Lemma 2.3 in [18]]).
Therefore Theorem (iii) shows that a Type .A homogeneous surface admits a
parallel tensor field if and only if the Ricci tensor is of rank one, in which case it is a
nilpotent Kéhler surface. The construction in Theorem #.6make an explicit use of the
nilpotent Kéhler structure. Therefore, it is important to have concrete expressions.
We begin with a useful algebraic fact that we will use to explicitly determine all
nilpotent Kihler structures on Type .4 homogeneous models. As a matter of notation,
let R(X, D) be the Lie algebra of affine Killing vector fields.

Lemma 5.10. Let D be a Type A connection on ¥ = R? which is not flat and which
satisfies PY(X, D) # gO} There exists (a1,a2) € R? and 0 # t € MY(R) so that
PY(S, D) = em® ta2z’¢ . R

Proof. It is convenient to complexify and set PA(X, D) := P°(Z, D) @r C. If K €
RA(X,D) and if T € PL(Z, D), then the Lie derivative Lx T belongs to P2(X, D).
Thus P2(X, D) is a finite dimensional complex £(, D) module. If D defines a
Type A structure on R2, the Christoffel symbols are constant and 9,1 and 0,2 are
affine Killing vector fields. If X and Y are vector fields, then we have LxY =
[X, Y] is the Lie bracket. Thus Ly ;8,5 = 0 and dually Ly ;da’ = 0; if T =
T%;0, ® da?, then {Ly T} ; = 0,x{T";}; the components of T do not interact.
The operators 0,1 and 89;2 commute and act on the finite-dimensional vector space
77(8(2, D). Consequently, there is a non-trivial joint eigenvector so 9,1 7" j= aT? §
and 0,2T"; = aoT"j; this implies 7' = eme ta2r®y for 0 £ t € MY(C). Since
(3, D) is not flat, the Ricci tensor is non-zero. Since the Ricci tensor is symmetric
for a Type A geometry, p? # 0. Theorem [5.3| then implies dim(P2(¥, D)) = 1.
Thus the real and imaginary parts of 7" are linearly dependent and we can assume 7T’
is real. The desired result now follows. O

Lemma 5.11. Let (X, D) = (R?, D) be a Type A structure which is not flat. Then
PO(X, D) # {0} if and only if (¥, D) is linearly equivalent to a Type A structure
with PT112 = PT192 = 0. In this setting,

pD = (_DFlQ1 DFlQ1 + Drlll Drggl + Drml DPQQQ)dCCQ & dz? .

Let a1 := —PTy1!, let ag := PT99? — PTot, and let T = ea1x1+a2x28m1 ® dx?.
Then P°(X, D) = T - R is I-dimensional and nilpotent.

Proof. Let D define a Type A structure on R? with P%(3, D) # {0} which is not flat.
We apply Lemmaﬂto choose (a1,az) sothat 0 # 1T = eu® Fazr?y ¢ PL(Z, D)
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for some 0 # t € MJ(C). By Lemma the eigenvalues of " are constant.
Assume the eigenvalues are non-zero. This implies e®1@' +a2e? g constant and hence
a1 = ap = 0. By rescaling T, we may assume the eigenvalues are £1 and hence,
after making a complex linear change of coordinates, we may assume 7; = 1,
T2y = —1,and Ty = T2, = 0. Setting D'T" = 0 then yields the relations

This forces the Ricci tensor to be zero which is false. Thus no Type A geometry
which is not flat admits a Kéhler or a para-Kéhler structure.

We may therefore assume the eigenvalues of 7' are constant and zero. After
making a linear change of coordinates, we can assume 1" = en® +axe’ 01 @ dx?.
We compute DT = 0 if and only if

Pry2=0, a1 +PTit —Pri? =0

PT1a2 =0, ag+ P! — Pryp? =0.

Thus (X, D) admits a non-trivial parallel nilpotent tensor of type (1,1) if and only
if PT'112 = PI'192 = 0. We make a direct computation to determine pD . Since the
Ricci tensor is symmetric, we use Theoremto see dim(P°(%, D)) = 1. O

We say that two Type A structures on R? are linearly equivalent if there exists an
element © € GL(2,R) which intertwines the two structures. As a consequence of
Lemma[5.11 we have:

Theorem 5.12. Let (X, D) = (R2, D) be a Type A structure which is not flat. Then
PY(X, D) # {0} ifand only if the Ricci tensor is of rank one. Furthermore, (X, D) is
linearly equivalent to a structure where Dri12 =0and PT5%2 = 0, and PO(E, D)=
T R, where T = e_DF“1x1+(DF222_DF121)128x1 ® dx?.

Remark 5.13. If (X, D) is a Type A geometry which is not flat, then (3, D) is neither
Kihler nor para-Kihler. Furthermore, any Type A surface with Rank(p?) = 2
satisfies dim(P°(X, D)) = 0.

Remark 5.14. Let (X, D) be a Type A surface with Ricci tensor of rank one and
let T = ¢u® +a2a’ d,1 ® dz? be a nilpotent Kihler structure as in Theorem A
straightforward calculation shows that the corresponding modified Riemannian ex-
tension (7*X, gp o ) with deformation tensor field & = 0 is anti-self-dual. This is
due to the fact that any Type A homogeneous geometry is projectively flat. More-
over it has been shown in [[18]] that any Type .A surface with Ricci tensor of rank one
admits affine gradient Ricci solitons (i.e., smooth functions f € C°°(X) satisfying
Hesf +2pP = 0) so that df (ker(p”)) = 0. Hence (T*S,gpor,h = 7*f) is an
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anti-self-dual gradient Ricci soliton which is never locally conformally flat. In this
setting, the soliton is steady (i.e., A = 0) and isotropic (i.e., ||d7* f||? = 0).

In a more general setting, results in [20] show that any Type A surface with Ricci
tensor of rank one admits solutions of the affine quasi-Einstein equation (i.e., smooth
functions f € C>(X) satisfying Hes s +2p2 — pdf @ df = 0) so that df (ker(p”)) =
0. Hence (T*%, gp,o,7, h = * f) is an anti-self-dual quasi-Einstein manifold which
is never locally conformally flat.

Results of [|[18] show that if (X, D) is a Type A geometry which is not flat, then
either dim(R(X, D)) = 2 or dim(R(X, D)) = 4.

Theorem 5.15. Let (X, D) = (R2, D) be a Type A structure. The following asser-
tions are equivalent:

(i) Rank(p?) = 1.

(i) P°(%, D) # {0}.
(iii) dim(P°(%, D)) = 1.
(iv) dim(R(%, D)) = 4.

Proof. Results of [18]] (see Lemma 2.3) show that pSD has rank one if and only if
(3, D) is linearly equivalent to a structure where D112 = 0 and PT'192 = 0. The
equivalence of Assertion (i), Assertion (ii), and Assertion (iii) then follows from
Theorem [5.12] The equivalence of Assertion (i) and Assertion (iv) follows from
Theorem 3.4 of [18]]. O]

5.3.2 Parallel tensor fields on Type 5 homogeneous surfaces

The situation is more complicated in the Type B setting. For instance, Remark [5.17]
shows the existence of simply connected affine surfaces with Rank(p?) = 1 but
with non-recurrent p? and dim(P°(XZ, D)) = 0. Also, in contrast with Type A
surfaces, there are non-flat Type 13 surfaces with p? = 0. This situation is discussed
in Lemmal[5.191

Let (X, D) = (R* x R, D) where T;;* = (2!)71C;;* and C;;* € R be a
Type B surface which is not flat such that P°(%, D) is non-trivial. In Lemma5.16]
we give an algebraic criteria for determining when P°(%, D) is non-trivial. In Lem-
mas[5.21H5.29] we use this criteria to divide the analysis into five different cases and
to determine when dim(P°(%, D)) = 1 or dim(P%(%, D)) = 3. We first prove an
analogue of Lemma[5.10]in this setting.

Lemma 5.16. If D is a Type B connection on ¥ = Rt x R and if P°(2, D) # {0},
then there exists o € C and 0 # t € MY(C) so that (z)*t € PL(Z, D).
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5.3 Parallel tensor fields on homogeneous surfaces

Proof. Let D define a Type B structure on R™ x R. The vector fields 9,2 and X :=
10,1 + 20,2 are affine Killing vector fields (see [18]). We have:

Lx(0,) =[X,0,] = -0, Lx(do?)=da’, Lx(0, ®dal) =0,
Ly ,(0y) =0, Lo ,(dz?) =0, Lp,(0y ®de!)=0.
Therefore the components do not interact and we have:
{LxT}; = XT'; and {Ly,T};=0,T';.

Because P2 (X, D) is a finite-dimensional 9,2 module, we can find a non-trivial com-
plex eigenvector, i.e., 0 # T € P(Z, D) so 9,2T%; = aT?;. This implies that
T = e“2x2tij (z'). Applying X* yields

XH(T) = e {af (@)t (') + O((«*)* )}

Thus if ag # 0, the elements {T', LxT, ..., LxT"*} are linearly independent for any
k. This is false since dim(P2(Z, D)) < 3. Therefore, T’ = t';(z'). We let V # {0}
be the subspace of all elements of P2(Z, D) where T = T(z!). Choose a non-
trivial eigenvector of Lx. Then 19,1 T = oT implies T'(z!) = (x!)®t for some
te MY(C). O

Remark 5.17. In the Type A setting, the condition Rank(p?) = 1 implies P°(%, D)
is non-trivial. This fails in the Type B setting. Let (X, D) be the Type B surface
defined by setting C25? = (3 + 2v/3)/3 and C;;* = 1 otherwise. We compute that

2 1
p 1 (YT A
PTERE L 2y

V3 V3

and, consequently, p2 has rank one. Assume dim(P°(X, D)) > 1. It follows from
Lemma that there exists an element in P2(X, D) of the form T = (z!)*(t;)
where 0 # (t';) € MY(C). Setting T"j.2 = 0 yields the relations:

L Bt 2t - et 0 0
(xl)a 1 —
2+ 0 th -t 0 0
We solve this relation to see t2; = t'9 and t!; = — - t!5. Substituting these relations

, V3
and setting 7" ;.1 = 0 then yields:
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Parallel tensors on affine surfaces

This shows t'5 = 0 and hence T = 0. This shows P%(X, D) is trivial. The result
also follows from Theorem |5.1|just observing that the symmetric Ricci tensor p? is
not recurrent.

Definition 5.18. We follow the discussion of [[18|] and introduce the following sur-
faces of Type B.

(1) For c € R, let Q. be the affine manifold of Type B defined by
Ciit=0, Cii’=c, Ciat =1, C122 =0, Cpl =0, Cpn?=1.
Since p? = (x1)"2dz! A da?, pP = 0.
(2) For 0 # c € R, let P&C be the affine manifold of Type B defined by
Cu'=F+1, Cu?=c¢, Ci'=0,
Ci2? = 72, Cool = £1, Cpn? = +2c.
Since pP = £(2')2cdx! A da?, pP = 0.

By Theorem|5.3| p? = 0 if and only if dim(P°(%, D)) = 3. We give a complete
description of Type B manifolds which are not flat where p? = 0 as follows.

Lemma 5.19.

(i) If (X, D) is a Type B manifold which is not flat but which has pP = 0, then
(3, D) is linearly equivalent either to Q. or to 776%0.

(ii) If (¥, D) = Q. for ¢ # 0, then

P@(Qazspan{( ’ 1>, <x1>2ﬁ( ve ! )

c 0 —c —4/c

(iii) If (X, D) = Q. for ¢ = 0, then
0 B 0 1 —log(zt) 1 —log(z!)?
P () Span{( 0 0 ) < 1 “log(z)) )

—log(x') —1— log(x!)?
1 —log(x!) '
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5.3 Parallel tensor fields on homogeneous surfaces

(iv) If (£,D) = 730%0, then

PP = span{@cl)-l ( S ) ,

(z1)! +1 (2! F 2e2?) x?
te(z! Fea?)  F3(z! F2c2?)

(xl)fl +22 (2! F cx?) (22)?
—(zt Fcx?)?  F2(a! Fca?) )

Proof. Assertion (i) follows from Lemma 4.6 in [18]]; the remaining assertions follow
from a direct computation. O

Remark 5.20. Suppose that (3, D) is a Type B surface with P°(3, D) non-trivial.
By Lemma there exists € C and 0 # t € MY(C) so that T := (z!)°t €
PL(Z, D). If v is complex, then the real and imaginary parts of 7" are linearly de-
pendent and both belong to PY(X, D). This implies dim(P°(%, D)) > 2 and hence
pP =o0. Lemmathen yields (X, D) = Q. for ¢ < 0 and « is purely imaginary.

In view of Lemma [5.19] we will assume p? # 0 henceforth. Let (3, D) be a
Type B geometry with P°(%, D) non-trivial and, since p? # 0, dim(P%(%, D)) = 1.
By Lemma there exists « € Cand 0 # t € MJ(C) so that (z!)*t € P(Z, D).
By Remark[5.20] @ € R and thus, by taking real and imaginary parts, we may assume
that 0 # t € MJ(R). Suppose o = 0. We deal with the case t's # 0 in Lemma
the case t'5 = 0 and t?; # 0 in Lemma and the case t'y = t3; = 0 and
thy #0in Lemma We then turn to the situation where o # 0. Since det(7) =
(21)2* det(t) is constant and since o # 0 is real, we conclude that t is nilpotent. In
Lemma|5.27| we assume t'5 # 0 and in Lemma we assume t's = 0 to complete
our analysis.

Lemma 5.21. Let D define a Type B structure on Rt x R with pP # 0. Suppose
that there exists 0 # t € PO(X, D) N May(R) with t'5 # 0. Rescale t to assume that
tly = 1. Then:

(i) The Christoffel symbols are determined by

C11l = Ot 21 + 2(C92? + 202 th)thy, Cra! = O0? + 209t tly,
C112 = (O + 2091 thy) 3, Cro? = Ol t? .
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Parallel tensors on affine surfaces

(ii) The symmetric part of the Ricci tensor is given by

D 1y—2 1 1 —th 1
Ps = (.iL' ) 022 ) C22

—t -1

(iii) The space of trace free parallel tensor fields is generated by

0 th 1
P(E7D): t21 —tll ‘R.

Proof. The equations Dy ,t = 0, ¢ = 1,2 become:

Ci2't? — C1y? Ciit — C12? — 20121t
—C 12 + 012282 + 20112t C11? — C1a't%

Co't?) — C19? Chat — Co? — 2099'tY
—C12'?) + 022 + 2019%tY Cr2? — Cp't?)

£0.

:(gg),
:<gg>.

These equations yield the relations amongst the Cijk; a direct computation then yields
pP: we obtain Ca' # 0 since p? # 0. Furthermore, since p” # 0, we have

dim(PY(3, D)) = 1 and the element given spans PY(3, D).

O]

Remark 5.22. Let t be a nilpotent Kihler tensor field as in Lemma Then, in
contrast with Remark|5.14] the modified Riemannian extension (7%, gp ¢ ¢) is never
anti-self-dual. Indeed, the affine structures in Lemma [5.21] are never projectively flat

unless p? = 0.

Lemma 5.23. Let D define a Type B structure on R™ x R with pSD % 0. Suppose
that there exists 0 # t € PY(2, D) N Ma(R) with t'y = 0 and t?1 # 0. Rescale t to

assume 21 = 1. Then:

(i) The Christoffel symbols are determined by

Cu' = C12? +2C11 %, Ciot =0, Cp' =0, Cp? = —2C12% .

(ii) The Ricci tensor is given by

1 —2t4

D _ (z1)-20,,2
p” = (27)7"C12 0 0

>, Cr2® #0.

(iii) The space of trace free parallel tensor fields is generated by
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5.3 Parallel tensor fields on homogeneous surfaces

th 0
PO(E,D):< 11 _t11>-R.

Proof. Setting Dt = 0 yields the relations

Cra! —2Cp" Y [0 0
—Cpt 4+ C12? + 20112ty Oyt ~\o o)’

Coo! —20p'" Y [0 0
—Chot + C9? + 20152ty —Coot Lo o/

We solve these relations to obtain the relations amongst the C’ij"’ . We then compute
pP. Since pP # 0, C122 # 0. Furthermore, since p? # 0, dim(P°(%, D)) = 1 and
the element given spans P°(%, D). O

Remark 5.24. The modified Riemannian extensions of nilpotent tensor fields in
Lemma corresponding to t'; = 0 are anti-self-dual whenever the deformation
tensor field ® = 0. In this case Lemmal[5.23| gives C12' = 0, Ca' = 0, C99% = 0,
and thus (3, D) is also of type A (see Remark [1.32). In this case, Remark
applies.

Lemma 5.25. Let D define a Type B structure on Rt x R with pP +# 0. Suppose
that there exists 0 # t € P°(X, D) N Ma(R) with t'y = t*1 = 0. Rescale t to assume
tly = 1. Then:

(i) The Christoffel symbols are determined by

Cii2=0, Cp'=0, C122=0, Cxn'=0.
(ii) The Ricci tensor is given by

pP = (21)72Co9%d2! ® da?, Cy? #0.

(iii) The space of trace free parallel tensor fields is generated by

1 0
PYU%, D) = ( 0 1 ) R.

1 0
0 -1

0 —201" | 0 —20»"\ (00
2012 0 o\ 2052 0 Lo o /"

Proof. Lett = < > . Setting Dt = 0 yields the relations
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Parallel tensors on affine surfaces

The relations in Lemma concerning the C’ijk now follow. We determine p”
by a direct computation; since p? # 0, Co22 # 0. Furthermore, since p? # 0,
dim(PY(3, D)) = 1 and the element given spans PY(3, D). O

Remark 5.26. Theorem shows that type A surfaces with dim(P°(X, D)) >
1 have dim(P%(X, D)) = 1 in the non-flat case and P°(%, D) is generated by a
nilpotent Kihler structure. In opposition, the Type 3 geometries in Lemma[5.2T| with
dim(P%(3, D)) = 1 contain Kihler, para-Kéhler and nilpotent Kihler examples. On
the other hand, the Type B geometries treated in Lemma and Lemma only
admit para-Ké#hler structures.

Lemma 5.27. Let D define a Type B structure on RT x R with p? # 0. Suppose
that there exists 0 # t € Mo(R) with t'9 # 0 and that there exists o # 0 so that
(x1)t € PY(X, D). Rescale t so that ' = 1. Then:

(i) The Christoffel symbols are determined by
Cra' = C? +2C'th, Cn? =t (=Ci' + t11(Cor?® + Cxp'th)),
0122 = —ngl(t11)2, o= —C111 + t11(2C222 + 30221’(11) #—1.
(ii) The symmetric part of the Ricci tensor is given by

(t11)2 tll

pf = —(z')2Cu' (1 + ) ( 1
tH 1

>, Caol #0.

(iii) The space of trace free parallel tensor fields is generated by

PD(Z,D>=<x1>a< G 1 )-R.
7(;( 1)2 7;(11

Proof. As noted previously, v # 0 implies t is nilpotent. Since we assumed t'y = 1,

1 1
T = (xl)oz ( _(11111)2 _tll ) .

The conditions Dy , T = 0 (¢ = 1, 2) imply the vanishing of the matrices

—C112 — (Cr2tty — a)th Cnl' — Ci2% + a — 201
(20112 4+ (Ot = Cre2 — a)tty)  C1i2 + (Cra'thy — a)th

and
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5.3 Parallel tensor fields on homogeneous surfaces

—C19? — Ol (th)? Chat — Coo% — 2092'tY
t11(2C12% + (C1o! — C2)th) Ch2? + Ol (t)?

We solve these relations to obtain the relations amongst the Cijk. The expression of
« and pP then follows by a direct computation. Since p2 # 0, we obtain Cay! # 0,
a # 0, and o # —1. Furthermore, since p? # 0, dim(P°(X, D)) = 1 and the
element given spans P°(X, D). O

Remark 5.28. Let T be a nilpotent Kiéhler tensor field as in Lemma([5.27] The mod-
ified Riemannian extension (7%, gp o 1) is not anti-self-dual.

Lemma 5.29. Let D define a Type B structure on R* x R with pP # 0. Suppose
that there exists 0 # t € Ma(R) with t'5 = 0 and that there exists o # 0 so that
(x1)*t € PY(X, D). Since t is nilpotent, t'1 = 0 and t*1 # 0. Rescale t so that
t2, = 1. Then:

(i) The Christoffel symbols are determined by
Ci2t =0, Cxp'=0, Cp’=0, a=0;!—-Cp?¢{0,-1}.
(ii) The Ricci tensor is given by
pP = (z1)72(1 + a)Co%dz! @ dat .
(iii) The space of trace free parallel tensor fields is generated by
PO, D) = (2")O1'~C12*9 @ da' - R.

Proof. Setting DT = 0 yields the vanishing of the matrices

0121 0 d 0221 0
an :
—C1' +C2 +a —Ciot —Chot + Cp? —CO9!

The relations amongst the C’ijk follows and « is determined. A direct computation
yields the Ricci tensor. Since p” = pP # 0, dim(P°(Z, D)) = 1 and the element
given spans P (%, D). O
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Chapter 6
General examples of Bach-flat
manifolds in neutral signature

In this chapter we generalize the construction in Chapter [ to characterize Bach-
flat Riemannian extensions of affine surfaces admitting a nilpotent structure without
assuming any parallelizability condition.

This chapter is organized as follows. In Sections [6.]and [6.2] we make use of the
Cauchy-Kovalevski Theorem to show that any nilpotent Riemannian extension can be
locally deformed to be Bach-flat in the real analytic case (see Theorem [6.1)). In Sec-
tion[6.3] we show that all these metrics have vanishing scalar curvature invariants (see
Theorem [6.8)). For that reason, in Section [6.3.2] we shall introduce suitable invariants
which are not of Weyl type to distinguish different classes. Finally, in Section [6.4]
we shall exhibit some specific examples of Bach-flat manifolds. In this chapter we
report on work investigated in [31].

6.1 Bach-flat Riemannian extensions

Let (X, D) be an affine surface. If (2!, 22) are local coordinates on X, let (z1/, z2/)
be the associated dual coordinates on the cotangent bundle. Let T' = T"; 0,r ® dzt
be a tensor field of type (1,1) on X and let ®;; be a symmetric (0, 2)-tensor on X.
The associated modified Riemannian extension

gp.o1r = 2dz’ o dzy

, - (6.1)
+ {%.’ET/.’L'S/ (TriTsj + TTstZ') — 2xk,DFijk + q’w} dz* o dx?

is invariantly defined and independent of the particular system of local coordinates
(see for example the discussion in Chapter and [29]). Let
Sr={peX:T(p)=Ap)ld} and Or:=%X - Sr.

The space St is the set of points where T is a scalar multiple of the identity; Or is
the complementary space.
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General examples of Bach-flat manifolds in neutral signature

Theorem 6.1. Let (3, D) be an affine surface, let T be a tensor field of type (1, 1),
and let ® be a symmetric 2-tensor.

(i) If ¥ = Sr, then (T*%, gp.o,1) is half conformally flat and hence Bach-flat.
(ii) Or is an open subset of .. If p € Or and if B(p) = 0, then T(p)? = 0.

(iii) If T is nilpotent on ¥ and if T'(p) # 0, then there exist local coordinates near
p so that T = 0,1 @ dx?. The following assertions are equivalent in such a
coordinate system:

(a) (T*X, gp,o,1) is Bach-flat.
(b) PT11? = 0and (PT11")? — PT1it PT o2 4 0,0 (PTnt — Prip?) = 0.

Proof. A direct computation shows that if 77 = fId for f € C°(X), then the
manifold (T*X, gp o 1) is self-dual [29], and thus B = 0; this establishes Asser-
tion (i). Consequently, we assume henceforth that there exists a point p of 3> where

T(p) # f(p)1d

Let Coeff[B; 2 ;] be the coefficient of ;2 j» in By,. A straightforward cal-
culation shows that the components of the Bach tensor are quadratic polynomials in
the fiber coordinates (xy/, xo), and moreover one has:

Coeff[B11; x1/21/] = & {(—30(det T)? — det T'(tr T')* + (tr T)Y) T (2, 2?)?
+2det Ttr T (17det T — 2(tr T)?) Ty (2!, 2?)
—2(det T)? (5det T + (tr T)?) },

Coeff[B11; z1 2] = T2 (2!, 2?) {(-30(det T)2 —det T (tr T')2+(tr T)*) T (2*, 2?)
+det TtrT (17det T — 2(tr T)?) },

Coeff[B11; zo x| = T2 (2!, 22)? {=30(det T)? — det T(tr T)? + (tr T')*}

Coeff[B1a; xy/@1/] = T2 (a1, 22) { (-30(det T)? —det T'(tr T)2+ (tr T)*) T+ (2, 2%)
+detTtrT (17 det T — 2(tr T)Q)} ,

Coeff[B12; z1 2] = 5 {2 (30(det T)?* tr T + det T(tr T')* — (tr T)5) T (21, 2?)
+2 (30(det T)? + det T'(tr T')* — (tr T)* ) (2t 2?)?
+det T (20(det T)? 4+ 16 det T'(tr T)? — 3(tr T)*) } ,

Coeff[B12; zo o] = T 2 (2t 22) { (30(det T)? +det T(tr T)2 — (tr T)*) T (=
—13(det T)*tr T — 3det T'(tr T')3 + (tr T) }
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6.1 Bach-flat Riemannian extensions

Coeff[Bag; z1 21| = §T?1 (2!, 22)? {=30(det T)? — det T(tr T)? + (tr T')*}

Coeff[Boo; ww] = 1% (a1, 2%) {(30(det T)? + det T'(tr T)? — (tr T)*) Ty (', 2?)
—13(det T)*tr T — 3det T'(tr T') + (tr T)°}

Coeff[Boo; wpwa] = § {(26(det T)* tr T + 6 det T'(tr T)® — 2(tr T)°) T (2!, 2?)
+ (=30(det T)? — det T(tr T)? + (tr T)*) Ty (2, 2%)?
—10(det T)% 4 2(det T)*(tr T)? — 5det T'(tr T')* + (tr 7))} .

Next we analyze the different possibilities for the eigenvalues of T'(p), showing
firstly that they cannot be complex. Assume that 7'y = T2 and Ty = —T2;. Then
det(T) = (T11)% + (T'3)? and tr(T) = 274, so we get

1
Coeff[B1; zyx1/] = —g(T12>2 {3(T"1)* +5(T"9)*}

from where it follows that 715 = 0.
Next assume that T'(p) has two distinct real eigenvalues and set T'y = T2 = 0.
Then det(T") = T1T?3 and tr(T) = T + T25, so we have
Coeff[‘Bll;xy:I:y] =
COCH[‘BQQ;$2/$2/] =

(T11)2(T11 o T22)2 ((T11)2 4 TllTQ2 o 5(T22)2) ,
(T22)2(T11 _ T22)2 ((T22)2 4 T11T22 _ 5(T11)2) ’

o= D=

and thus

T ((TH)* + THT? — 5(T%2)%) =0 and

T2 ((T?9)* + THT? — 5(T")?%) = 0.
If ' = 0, then T2 # 0 and the second identity fails. Similarly, if 725 = 0, then
Ty # 0 and the first identity fails. Thus 7'y # 0 and 725 # 0 and we obtain

(T'1)2 +TY14T?% —5(T%2)>=0 and
(T23)% + T1 T2 —5(T")* = 0.

Adding the two identities yields 4(7'1)? — 271,725 + 4(T%3)2 = 0. The only
real solution to this is (71,7T%2) = (0,0) which is false since we assumed the
eigenvalues to be distinct.

Thus the eigenvalues of 7'(p) must be real and equal. Since T'(p) is not a scalar
multiple of the identity, we must have non-trivial Jordan normal form at p. If we
choose coordinates so

T(p) =T (0, @ dz' + 9,2 ® da?) + O ® da?,
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General examples of Bach-flat manifolds in neutral signature

we obtain that Coeff[B11; o] = —3(T'1)* Thus T = 0 and T is nilpotent.
This completes the proof of Assertion (ii).

Now assume that 7" is nilpotent. By Lemma [5.4] we may choose coordinates
soT = 0,1 ® dax?. Examining B1; yields br2 = 0. Examining Bay yields
the remaining relation of Assertion (iii-b). A direct computation shows that if the
relations of Assertion (iii-b) are satisfied, then the Riemannian extension is Bach-
flat. ]

By Theoremwe may decompose > = SpUOr as the disjoint union of the set
of points where 7' is a scalar multiple of the identity and the set of points where T is
nilpotent and has non-trivial Jordan normal form. In the real analytic setting, if Or
is non-empty and if ¥ is connected, then Or is dense in X and 7' is always nilpotent.
Next we provide an example in the smooth category where this observation fails.

Example 6.2. Let ¥ = R? and let a(z?) be a smooth real valued function which
vanishes to infinite order at x> = 0 and which is positive for 2 # 0. Impose
the conditions of Theorem (iii-b) and assume that T'1;%2 = 0 and (PT'111)% —
DF111 DF122 + arl (DFHl — DF122) = 0. Let

az? 0
( (O) a(x2)> if 2% <0,

2
0 a(a?) it 22>0.
0 0

One may then compute that 5 = 0 so this yields a Bach-flat manifold where the
Jordan normal form of T' changes at 2 = 0. Furthermore, if we only assume that o
is C* for k > 2, we still obtain a solution; thus there is no hypo-ellipticity present
when considering the solutions to the equations 8 = 0.

Remark 6.3. We note that the auxiliary tensor ¢ plays no role in the analysis. We
also note that we can express the conditions of Theorem [6.T}(iii-b) in the form

Pry2=0, Pryt=-0.8 Pr?=Pril+c e

for smooth functions ¢ = ¢(x?) and 8 = B(z!, 2?).

6.2 Deformation of nilpotent Riemannian extensions

Theorem [6.1] permits us to construct connections so the Riemannian extension is
Bach-flat once the nilpotent endomorphism is given. Next, we focus on the reverse
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6.2 Deformation of nilpotent Riemannian extensions

problem of constructing nilpotent endomorphisms so the Riemannian extension is
Bach-flat once the connection is given; this is, in certain sense, a more natural ques-
tion.

For sake of completeness we include the following statement of the Cauchy-
Kovalevski Theorem, which is an essential argument in proving Theorem We
refer to [53]] for a discussion of Theorem [6.4]

We assume the following boundary-value problem:

n—1
Uy = Z B,(u,2")u,; + c(u,2’) for |z| <,
o (6.2)
u=0 for |2/|<r, 2"=0,
where B; = (bé?‘]) withj =1,....,n—1,c = (c!,...,c™) and u,« denotes partial

derivative.

Theorem 6.4 (Cauchy-Kovalevski). Assume {B; ;l:_ll and ¢ are real analytic func-
tions. Then, there exist r > 0 and a real analytic function

u= E u,z”
(e}

solving the boundary-value problem

Roughly speaking, one compute all the derivatives at the origin of a possible so-
lution and uses them to construct the formal Taylor’s series of an anticipated solution.
The proof of the theorem reduces to show that the series converges about the origin.
The convergence of the series could be establish, indirectly, by the method of the
majorant.

If T is a scalar multiple of the identity, then (7%, gp ¢ 1) is half conformally
flat. We focus, therefore, on the case 7' which is nilpotent henceforth and assume,
unless otherwise noted, that 3 = Or. We work locally. Fix p € ¥ and a local system
of coordinates defined near p. We wish to find 0 # T nilpotent so that (73, gp &7)
is Bach-flat. Since either T'5(p) # 0 or T2 (p) # 0, we assume for the sake of
definiteness that T%5(p) # 0. This implies that we may expand 7" near p in the form

T = a(xl,a:Z) ( 5(:E17x2) 1 2) > ' (63)

—&(at,2%) —E(at 2

For sake of simplicity we introduce the following notation to be used in Defini-
tion and the proof of Lemma and Theorem Let ¢(z!, 2%) be a smooth
function. Then ¢ = 9,16, (29 = §,1,1¢ and so forth.
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Definition 6.5. We introduce the following operators:
Pl(f) = _5(1,0) + 55(071) + DF221§3 _ (2DF121 _ DF222)§2
+ (Pt — 2PT1%)€ + PIys?,
Pa(€,a) = a9 + 20002 — 2taaD) + (aL0)2 4 £2(a(0D)2 — 2¢4(1:0) o0
— aa(l0) (25(0,1) _ 5DF221£2 + 2(4DF121 _ DF222)§ — 301, + 2DF122)
+ aa(OD (26601 — 6DTy,1¢3 + (10PT 5! — 30T9p2)¢?
—4(PTyyt — PTyp2)¢ — PTy,2) + 66402 (PTap!)?
— 26302 ((PTgp") (01 4 9PT 1P oy — 30T, 10T'552)
_ 52042 (4DF221§(O’1) _ 3(DF121)(O’1) _ 2(DF221)(1’0) + (DF222)(O,1)
_ 12(DF121)2 _ (DF222>2 _ 7DF111DF221 +7DF121DF222 + 9DF122DF221)
+ 50&2 (2(3D1‘1121 _ DF222)£(071) _ (Drlll)(o,l) _ 3(DF121)(1’O)
F(PT1p2) @D 4 (PTy,2)(10) _ 9(Pp 1 DD .2y (4P, — DTy,?)
+4PT132PT51) — a2 (2(PTyp ! — PTyp2)g@D) — (PTy,1)(1.0)
+(DF122)(1’0) _ (DF111)2 + DF111DF122 + 3DF112DF121 _ DF112DF222) .
Lemma 6.6. Ler (X, D) be an affine surface. Let T have the form given in Equa-
tion[(6.3) and let ® be arbitrary. The modified Riemannian extension (T*%, gp & 1)

of Equation is Bach-flat if and only if o and & are solutions to the partial differ-
ential equations P1(§) = 0 and P2(§, ) = 0.

Proof. We suppose T is a nilpotent tensor field of type (1,1). Then tr(7) = 0
and det(T) = 0. If we assume that T'5(p) # 0, then T has the form given in
Equation A direct computation shows

B Bip 0 0
B B 00
B = 12 Bo
0 0 0 0
0 0 0 0

and thus only 811, B2 and By, are relevant. We observe that
Coeff[B1, 0] = —4ag?,
Coeff[B1a, a(20)] = —4ag,
Coeff[Byos, a?0)] = —4a .

We therefore define 91 := B11 — B12&, Qo = B — Booé? and Q3 := 29 — Ny
We may then express Q3 = —4a?(P;)? and thus the vanishing of Q3 is equivalent to
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the vanishing of P;. We set P; = 0 and express £(10) = Fr0)(&, Dr, ¢O.1) Differ-
entiating this relation permits us to express {1V = Fy 1) (¢, PT, dPT, 01 £02))
and €20 = Fy (&, PT,dPT, 0D, ¢02)) Substituting these relations then yields
7 = 0and Q9 = 0. Thus only B1; plays a role. Substituting these relations permits
us to express By = —4£2P,. The desired result now follows. O

Theorem 6.7. Let (X, D) be a real analytic affine surface. Then there exist locally
defined nilpotent (1,1)-tensor fields T such that the modified Riemannian extension
(T*X, gp,o 1) is Bach-flat.

Proof. Suppose (X, D) is real analytic. The operator P (¢) of Definition [6.5] takes
the form:

Pi(§) = €10 +&60V + f(¢,°T).

Given a real analytic function &y(z?), the Cauchy-Kovalevski Theorem shows that
there is a unique real solution to the equation P;(£) = 0 with £(0,22) = & (x?).
Once ¢ is determined, the operator P2 (€, o) of Definition takes the form

Po(é, a) = aa®? —2eaa™Y + 2000 + F(a,do; PT,dPT; ¢, de) .

Given real analytic functions o (22) and o1 (z2), there exists a unique local solution
to the equation Py (&, @) = 0 with a(0,22) = ag(z?) and a9(0,22) = oy (2?).
Thus given D, there are many nilpotent 7" so that (7%, gp ¢,7) is Bach-flat in this
setting; the auxiliary tensor ® plays no role in the analysis. O

6.3 Invariants of nilpotent Riemannian extensions

6.3.1 VSI manifolds

A pseudo-Riemannian manifold is said to be VSI (vanishing scalar curvature invari-
ants) if all the scalar Weyl invariants (i.e., invariants formed by a complete contraction
of indices in the Riemann curvature tensor ;¢ and its covariant derivatives) vanish.

Theorem 6.8. Let (X, gp o 1) with T # 0. The following assertions are equiva-
lent:

(i) (T*2,9D7¢,T) is VSL
(ii) |R||* = |pl* = 0.
(iii) ||p||* =7 =0.

(iv) T is nilpotent.
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General examples of Bach-flat manifolds in neutral signature

We will show the different implications in Theorem[6.§]in the rest of this subsec-
tion. Clearly if (T*%, gp .o ) is VSL, then || R||?> = ||p||> = 7 = 0. Thus Assertion (i)
of Theorem [6.8]implies Assertions (ii) and (iii).

Assertions (ii) or (iii) imply Assertion (iv) in Theorem

A direct computation shows that 7 is a quadratic polynomial in the components of
T and that || R||? and ||p||? are fourth order polynomials in the components of T'; the
other variables do not enter. Moreover

T = =2(detT — (trT)?),
lpll? = (detT)? —6det T(trT)2 + 2(tr T)*,
|R[? = 4(3(detT)? —4det T(tr T)? + (tr T)*).

Hence ||p||? = 7 = 0 or ||p||?> = || R||? = 0 if and only if det(T) = tr(T) = 0.

Example 6.9 (The vanishing of just one invariant). The next example shows that
the conditions || R||*> = 7 = 0 do not suffice to get that T is nilpotent nor does the
condition ||p||?> = 0 suffice to get that 7" is nilpotent. Indeed, ||R||?> = 7 = 0 if and
only if det(T) = (tr(T))>2.

Let 7(x', 22) > 0 be an arbitrary smooth function and let § be constant. Set

i cos(f)  sin(h)
T =r(z',2?) ( —sin(d) cos(f) ) |

This example is not nilpotent and we have

7 = 2r(z, 2?)%{1 + 2cos(20)},
lpll? = r(z', 2?)*{1 + 4cos(20) + 4 cos(46)},
IR|? = 4r(z',2?)*{1+2cos(46)}.
Choosing # = % one has that 7 = ||R||* = 0 but ||p||* = —3r(z!,2%)* # 0. More-
over, setting § = 3 arctan (Hﬁ) one has [|p||2 = 0but 7 = (1 + V/7)r(x!, 2?)?

1-V7
and ||R|> = 2(2 — VT)r(z!, %)%

Assertion (iv) implies Assertion (i) in Theorem

In the final step we will show that 7" is nilpotent implies that (7%, gp ¢ 1) is VSL
Although this fact already follows from the results in [43,|65]], we include a direct
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6.3 Invariants of nilpotent Riemannian extensions

proof for sake of completeness. Before establishing this implication, we must derive
an additional technical result.

Assume that 7T is nilpotent. By Lemma we may choose coordinates so
T = 0,1 ®da? Letg = 9D.®,T- Then{g”,Fijk,Rabcd;el_”ek} are polynomial
expressions in the fiber coordinates x1/ and xo, whose coefficients depend on the
variables {PT;;*, ®;;} and their derivatives with respect to 2! and 2. In such a
coordinate system, one computes that the possibly non-zero components of the ten-
sor g%, of the Christoffel symbols, and of the curvature R are, up to the usual Zo
symmetries,

gl g g2 e p p2 p1

%, Tl T Y, ¥, oot 'o?, Tt 64)
Tip?, Tpl, Te?, Tel, TIyw?, Tl To?, Tl .
T9o?, Rizia, Risir, Riziz, Riser, Rissy, Rovor .

Of particular interest is the fact that Ro1/91- = —1. Let o(+) be the maximal order

of an expression in the dual variables {z1/, zo}. Thus if o(-) = 0, these variables
do not occur, if o(-) = 1, the expression is linear in the variables {x1/, zo }, and so
forth. In other words, we define o(z1/) = o(z2) = 1 and extend o to a derivation.
If o(R;jke) = 2, then R;ji, is at most quadratic in {x/, zo }; if 0(R;jk¢) = 1, then
R;jie is at most linear in {1/, xo }; and if 0(R;jx¢) = 0, then R, does not involve
{z1/, o }. We have:

o) =0, o2 =0, oln")=1 ofln?) =2,
o) =0, o('12?) =0, o(T') =1, op?)=2,
oY) =0, o1?)=0, oT12")=0, o12?)=0,
0(T') =1, o) =0, oTx")=2olx?) =2,
o(Tor') =0, ol91¥)=1, o(9')=0, ol9?)=0,

0(Ri212) =2, o(Ri21r) =1, 0o(Ri2127) =0, 0(Rygr) =1,
0(Ri22) =1, o(Raro1r) =0.
We define the defect by setting

2 2
D(Fijk) = Z{5z,n + 5j,n - 5k,n} + Z{(Si,n’ + 6j,n’ - 514:,71’}7
n=1 n=1

v
O(Riyinigissis.in) 7= Y {0110 + iy 20 — 831 — Gi 2} -
n=1
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General examples of Bach-flat manifolds in neutral signature

In brief, we count, with multiplicity, each lower index ‘1’ or ‘2’ with a —1 and ‘1”
or ‘2" with a +1 and reverse the sign for upper indices. This will play an important
role in contracting indices subsequently. We then set r = o0 4 9 and compute:

r(Ri212) = =2, (Rioirr) = =1, r(Rio1z) = =2, r(Rigr) = —1,
t(Rigoy) = =1, x(Rorar) =0.
Lemma 6.10. Suppose that Ri1i2i3i4;j1...jy 7'é 0. Then x(Ri1i2i3i4;j1---ju) < 0. Fur-
thermore, t(Ri,iyizisjr...5) = 0 if and only if v = 0 and R; iy, = = Ro1/21.

Proof. As a matter of notation, throughout the proof of this lemma 9; denotes 0,
if j € {1,2} and 0,, if j € {1,2'}. Let Riiyiziy, # 0. By Equation
¥(Riyigisi,) < 0 with equality if and only if R;,i,i5i, = £R21/91/. This establishes
the result if » = 0. Next we suppose v = 1 and examine V R. We expand

— a a
Ri1i2i3i4§j - aJ'Rillélé,m - E :Fj’h Rai2i3i4 - E :Fji2 Rilai3i4
a a
a a
= Tiis® Riyigais — Y _ Djis® Riyiniga -
a a

We examine different cases separately, depending on the kind of addend which gives
the order in the above expression for 1; ;,isi4;j-

Case 1. 0(Rj,izizis:;j) = 0(I'ji,” Raiisis). (For any other addend of this type the
argument is similar).
In this case, since (R inigis;j) = 0(I'ji,® Raisizis)» We have

Y(Riyigisiag) = 8(Ljiy® Raigisia) = 2T, *) + t(Raigisia) -

Suppose 7(R;,iyizis;j) > 0. Since Equation implies that r(I'j;,*) < 0 and
¥(Raiqigi,) < 0, we conclude that

?(tha) = x(Rai2i3i4) =0,
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6.3 Invariants of nilpotent Riemannian extensions

which is a contradiction since, again by Equation t(I'j5,*) = 0 implies that
a € {1,2'}, while r(Raiyizi,) = 0 implies that a € {2,1’}. Thus, we conclude that
necessarily (R, iyizis;j) < 0.

Case 2. 0(Rijigisizij) = 0(9j Riyizizis ) With j € {1,2}.
Note that o(ajRili2i3i4) < 0(Ri1i2i3i4) and D(]3”1'11'21'31'43) = D(Ri1i2i3i4) - L
Thus,

Y Rijigigiaig) = 0(0jRijigigis) + 0(Riyigigis) — 1
< U(Ri1izi314) + D(Ri1i2i314) 1= x(Ri1i2i3i4) - 1.
Now, since r(R;,iyizi,) < 0, we conclude that r(R;,iyiziy:5) < O.
Case 3. U(Ri1i2i3i4;j) = 0(6jRZ‘12’2,‘3Z‘4), Withj S {1/, 2/}.

In this case, a key observation is that 0(0;R;,izizi,) < 0(Rijinizis). Indeed,
analyzing the components with 0; R;, ;,i,i, 7 0 we distinguish two cases: the com-
ponents Ri211/, Ri2o1 and Rigoy are of the form z1/ Fy (2!, 22) + Fy(z!, 22) and
hence 0(0j R iyigis) = 0 < 1 = 0(Rj,iyizis)- On the other hand, R;212 is of the form
(z1)2F1 (2!, 2%) 4+ 2y Fo(a!, 22) + 2o F3(2t, 2%) 4+ mpao Fy(2!, %) + F5(at, 2?)
and therefore 0(8]‘R1212) =1<2= 0(R1212).

Hence U(OJ'RilizZBM) < O(Rili2i3i4) and since D(Rilizi3i4;j) = D(Rilizisu) +1
we have:

F(Ri1i2i3i4;j) = U(ajRi1i2i3i4) + D(Ri1i2i3i4> +1
< 0(Riyigigis) + 0(Riyigigia) + 1 = t(Riyigigis) + 1.
Now, note that R; i,isi, 7 E£R21/91/ in this case and therefore r(R;,iyiqi,) < 0, SO
we conclude that ¥(R;, iyizisj) < 0.

In the second part of the proof, for v > 2, we proceed by induction in two con-
ditions. In particular, we suppose that 0(0;, Ri,izizisijr...jo—1) < 0(Riyiniziaijr...jv_1)
whenever j, € {1',2'} and 9j, Ri,izisisijr..5_1 7 0, and we also suppose that if
Riisisissjr...j, 7 0 then ;(Ri1¢2i3¢4;j1“,jy) < 0. Next we show that both conditions
hold for v + 1. We expand

Ri1i2i3i4;j1.-.ju+1 - aju+1Rmzlsz4;J1..-Ju § ij+111 Ramgum--du
a
a . . —_ . . a . . . . .
_§ FJV+1Z'2 an324;]1--ou E FJV+123 Rmzaum-.au
a a

- § FJV+1Z4 R1112l3a;]1---Ju'
a

169



General examples of Bach-flat manifolds in neutral signature

As in the case v = 1 we analyze separately the different cases depending on the kind

of addend which gives the order in the expression for i, iyigis;j1...j041-

Case 1. U(Ri1i2i3i4;j1...jy+1) = O(Pju+1i1a Rai2i3i4;j1...ju)- (FOI' any other addend of
this type the argument is similar).
In this case, D(Ri1i2i3i4;j1mju+1> = a(Fju+1i1a Rai2i3i4;j1~-ju)’ so we have

Y Riyigisiaign..gvrr) = ¥ Raigigiasin...i) = ¥V, 1000") + ¥(Raigigiagi...g ) -
Since (T, ,i,*) < 0 by Equation[(6.5)|and we are assuming t(Raizizis;ji...j,) < 0,

we conclude that £(R;,iyizigsjr...sr) < 0.

Case 2. 0(R; izisisiji..jur) = (0,1 Ritinisiain..jn)» With juy1 € {1,2}.
Using that 0(9;, ., Ri ivizisiji.gu) < 0(Rijigiziaijr...;y) and that, in this case,
O(Riyinisiasji..gusr) = O(Ririgisisijr...j,) — 1, we have
Y Riyigigiaiy.gurr) = 091 Rivigigiasia...j) + 0(Riyigigiaggr..jn) — 1
0(Riyigisiajr...jw) + 0 Riyigigisijn..j) — 1
= (Riyigigiazr..jn) — 1-

IN

Since we are assuming £(R;, iyizisiji..5n) < 0, We get t(Rijigizissjr..jpis) < 0.

Case 3. U(Ri1i2i3i4;j1---ju+1) = O(aju+1Ri1i2i3i4;j1---ju)v with ju41 € {1/a 2/}'
Suppose that 0(0;, ., Riyisiziasjr..jn) < 0(Rijigiziair...n)- Since the defect satis-

fies 0(Riyigigiaijn..gir) = O(Riyigigiajr..j,) + 1, then

Y Riyigigiaiygupr) = 009y Rivigigiazis..jn) + 0(Riyigiiajr..ju) + 1
< 0(Riyigigiajrog) T O(Riyigigiasir..jn) + 1
= ?(Ri1i2i3i4;j1~.ju) +1.

Since we are assuming ¥(R;,izizis:jr...5,) < 0, we conclude r(R;,ipiqiy:j. ) <O0.

u]’u+1

We finish the proof showing that if 0;,,, , Ri,izisis;j;...5, 7 0 then

0(9j, 1 Rivinigiasir..jn) < 0(Rivigisiaijn...ju)s

where j,+1 € {1’,2'}. We analyze the three different kind of addends in the expres-
sion of 0j, ., R iyisis;jy...;, showing that the order of each addend is always smaller
than the order of the addend from which it derives. This, in particular, implies the
above inequality.

e For 0;

]VHBJ-V Ri1i2i3i4;j1---ju719 SInce we are assuming

0(8ju+1 Ri1i2i3i4;j1---jy71 ) < U(Ri1i2i3i4;j1---juf1)a
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6.3 Invariants of nilpotent Riemannian extensions

we have
0 (8ju+1 0j, Rivigisiasj g ) = 0(8ju aju+1 Riiiziasji.gu—1 )
< o(aju+1Rili213i4;j1.--ju—1)
< O(Ri1i2i3i4;j1~~ju71) :
e For 0;,., ( L,i1%) Raigigia:jn...jo_1» @ direct and straightforward calculation shows

that 0(9,T;;*)) < o(I';;*) whenever o(T';;*) > 0 and ¢ € {1/,2'}, so we get

0 (8ju+1 (Fjuha) Rai2i3i4;j1---ju—1) = 0(8ju+1rjui1a) + U(Rai2i3i4;j1---ju—1)
< oL, ) + 0(Raigigiaijn...jv1)

U(F]uzl R01223Z4§J1---Ju71)'

Jui1 (Rai2i3i4;j1---juf1)’ since we are
assuming 0 (9j,,, Raigizisijr..g_1) < 0(Raigizissji...ju_r) WE have

e Finally, for an addend ot the type I'; ;,* 0;

0 (Lj,0* 9jyr (Rainisisijrgo)) = 050" + 00051 Raisiisijr.j)
< U(Fjuha) + O(Rai2i3i4;j1mjuf1)

0(Lj,i,* Raigigiaijy..ju_1) -

d

Now we are ready to show that Assertion (iv) implies Assertion (i) in Theo-
rem|[6.8] Suppose 7 is nilpotent. Let VW be a Weyl scalar invariant formed from the
curvature tensor and its covariant derivatives. By Equation , we can contract an
index ‘1’ against an index ‘1” and an index ‘2’ against an 1ndex 2", We can also
contract indices {1’,2'} against {1’,2'}. Consequently, if A = Ry iizisijr...jy - - - 18
a monomial, then

deg;(A) < degy/(A) and degy(A) < degy(4),

where deg,(A) denotes the number of times that the index ‘¢/” appears in the mono-
mial A. The inequality can, of course, be strict as we can also contract an index ‘1"’
or ‘2" against an index ‘1" or ‘2", This implies that 9(A) > 0. Since o(A) > 0, this
implies r(A) > 0. By Lemma|6.10} £(A) < 0. Thus we have r(A) = 0. This implies
A is a power of Ry1/51/. Since we cannot contract an index ‘2’ against an index ‘1,
we see that W = 0. This shows Assertion (iv) implies Assertion (i) in Theorem [6.8]
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General examples of Bach-flat manifolds in neutral signature

6.3.2 Invariants which are not of Weyl Type

Let (X, D) be an affine surface and let (7%, gp o ) be the associated Riemann-
ian extension where 7' is nilpotent. We begin by decomposing the curvature and the
Ricci tensor of (1%, gp ¢.1). Choose coordinates so T = 9,1 @ dx?. Let {R, p} be
the curvature operator and Ricci tensor of (7%, gp ¢ 1) and let {RP, pP, pP pD}
be the curvature operator, Ricci tensor, and the symmetric and skew-symmetric Ricci
tensors of (X, D). Let ¥ := span{d;,,, 0y, } be the “vertical” space and let §) :=
span{d,1, 0,2} be the “horizontal” space. These are, of course, not invariantly de-
fined. We may then decompose

Rxy1' Rxy2! Rxy1' Rxvya!
- (2 ) e

RX.Y) Rxy1? Rxy2? Rxy1? Rxya?
7 RY - RXY11: RXY21: RY = RXY1’1: RXY2’1:
K Rxy1? Rxy2? Rxy1? Rxy2?

The next result follows by a direct computation.
Lemma 6.11. Tuke (T*%, gp o 17) where T = 0,1 ® dx?, as above.
(i) R’%(X, Y) = 0forall X,Y vector fields on T*Y, i.e.,

R’ =0 for 1<i<2,1<j<2.
(ii) {Rg + (RY)'HX,Y) = 0 for all X,Y vector fields on T*Y, i.e.,
Rapi' + Rap1r! = 0, Rapo? + Rap? =0,

/

Rab12 + RabQ’ll = 0: ]%abZ1 + Rab1’2 =0.
R2(0yi, 0y3) = O fori < jand (i,5) ¢ {(1,2),(2,1)}.

Ry’ Rorot \ [0 -1
Roin? Roin®> |\ 0 0 .
Rizit Ryt _ Ri Y R,
Ri1?  Rigo? D12 Rb?

n —Pr2 Pyt — Pryy?
Al .
! 0 DT ,,2

tr(Rg(X, Y)) =2(r*pb ) (X,Y) for all X, Y vector fields on T*Y. .

(iii) pyrj = pyrjr = 0foralli,j=1,2.
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6.3 Invariants of nilpotent Riemannian extensions

P11 P21
( ) =2pP
P12 P22
T 0 2.’1}1/DF112
2211112 229/ (PTo? — 2PT 1) — 220 P11 + @y )

(iv) VR(i,7,1,1;k) + VR(i,7,2,2; k) = O unless {i, 5, k} € {1,2}.

The manifold (7%, gp ¢ 1) is a Walker manifold; U := span{d;,,,0s,, } is a
null parallel distribution of rank two by Equation [(6.1)| and Equation Generi-
cally, this is the only such distribution and U is invariantly defined. We use 2 as an
additional piece of structure and redefine $) := T'(7T%X) /U and let 7 : T(T*%) — §
be the natural projection. By Lemma 7R(X,Y)v = 0 for v € U and thus
mR(X,Y) descends to a well-defined map that, via an abuse of notation, we con-
tinue to denote by Rg(X ,Y) of $. Let { X7/, Xo } be a local frame for 2J. Choose
{X1, X2} so that

g(Xl,Xll) = g(XQ,XQ/) =1 and g(Xl,Xgl) = g(XQ,Xll) =0. (6.6)

We note that { X, Xo} is not uniquely defined by these relations as we can add an
arbitrary element of U to either X; or Xy and preserve Equation However
{m X1, 7 X2} is uniquely defined by Equation [(6.6)] And, in particular, if we take
Xy = 811/ and Xo = 612,, then we may take X1 = 0,1 and Xo = 0,2.

We use Lemma [6.11]to introduce some additional quantities.

(1) Since p(X,Y) = 0 if either X or Y belongs to U, p descends to a map from
$H @ $ to R that we shall denote by p” € S?(H*). Let 7 : T*YX — X. Since
(V) =0, : H — TE. I PT12 = 0,if 2PT112 = PT192%, and if ®1; = 0,
then p” = 2% pP.

(2) Let Q(X,Y) = tr(Rg(X, Y)). Then Q(X,Y) = 0 if either X or Y belongs
to U so () descends to an alternating bilinear map from $ & §) to R that we
shall denote by 29 € A2($*). We have Q9 = 27%pD).

(3) As U is parallel, VR(X,Y; Z) maps U to U. Consequently, VR(X,Y; 7)
extends to an endomorphism (VR)?(X,Y;Z) of §. A direct computation
shows that tr((VR)"(X,Y;Z)) = 0if X, Y, or Z belongs to ¥. We may
therefore regard tr((VR)"(X,Y; Z)) € A%($) ® $H*. Assuming that 0 # 0,
we may decompose tr((VR)?) = w? @ Q9 for w? € H*. Moreover, one has
dw® = 09,

173



General examples of Bach-flat manifolds in neutral signature

Definition 6.12. Suppose that we are at a point of (17X, gp ¢ 1) Where p? defines a
non-degenerate symmetric bilinear form on ). We may then define

(Rio1' + R120?)?
P11P22 — P12P12 '

pi = ”aniﬁ =

If we also assume that Q9 £ 0 (i.e., pL # 0) or, equivalently, that 31 # 0, then w®
is well-defined and we may set

By = w2 -
We have

1 2 1 2
Rig17 .1 + Ri22”1 5 2172+ Ri2o™
5

wp = 1 7 W 1 2
Rio1' 4+ Rigo Rio1! + Ri2

gy i PP T PR W) — 2piye

9 H 9N
P11P32 — P12P12

5 .9
195

It is obvious from the discussion given above that 81 and 32 are isometry invari-
ants of (T*%, gp o ) where defined.

Generically, 3 and (3 are very complicated expressions which involve non-
trivial dependence on the fiber variables and which involve the endomorphism .
It is interesting to note that if we consider a nilpotent (1,1)-tensor field 7' given by
T = 0,2 ® dz', then proceeding in a completely analogous way as in Lemma
one can construct the invariants 31 and (32. In the next section we will present exam-
ples of Bach-flat manifolds where both invariants are calculated.

Remark 6.13. The facts that (RY) € A*($*), w® = tr(VR)?/Q° € $* and dw® =
09 is, of course, not true for a general Walker manifold. This observation perhaps can
be useful in studying when a general Walker manifold is one of our special examples.
All of these are pull-backs of similar identities on the base.

6.4 Examples of Bach-flat manifolds

The existence of a null distribution 0 on a four-dimensional manifold (N, g) of neu-
tral signature defines a natural orientation on N: the one which, for any basis {u, v}
of U, makes the bivector u A v self-dual (see Chapter [1| and [49]). We consider
on 7Y the orientation which agrees with U = ker(7,), and thus self-duality and
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anti-self-duality are not interchangeable. Let

e1 =0y + 5(1 — (90,0.7)11)0s,,»
e2 = 0,2 — (9p,0,1)120z,, + 35(1 — (9p,0,1)22) s,y
e3 =01 — 3(1+ (90,0,7)11)0x,,,
es =02 — (9p,0,1)1202, — 3(1 + (9D,0,7)22) 0,

be an orthonormal basis of (1", gp e 1) With 1 = €2 = 1 = —e3 = —&4
(where ¢; = g(e;,e;)). Note that el Ao net agrees with the orientation deter-
mined by U = ker(m,). Then, the spaces of self-dual and anti-self-dual 2-forms,
A2 = ({Ef,E¥, E{}), have induced basis

el Ne2 +e3 A et el Ned +e2 A et
V2 ’ V2 ’

Here observe that the Hodge star operator satisfies

el/\e4$€2/\e3

V2

Ef = Ef = Ef =

el Ned Ax(eF Ael) = (5};5? - 6@5%) cigjel N2 neP Aet.

Further note that (Fi5, BiY) = 1, (B, EF) = —1, (B, Ef) = —1, where (-, -)
is the inner product defined in Chapter , and let I/sz; = W* (Ef, Eji) denote the
components of the self-dual and anti-self-dual parts of the Weyl curvature tensor.

Let 0 # T = T7;(x',2?%) be a nilpotent tensor field of type (1,1) as in Equa-
tion[(6.3)] A straightforward calculation shows that

_ 1
Wi = —sa(eh, a2 e o) + 172 Wi = —2p5(00,0,2).

Therefore, W~ is always non-null and the non-symmetry of p” guarantees that
(T*X, gp,o ) is not half conformally flat.
We recall that a manifold is conformally Einstein if and only if the equation

(n—2) Hes, +pp— {(n—2)Ap +p7)g =0 6.7

has a positive solution, where the conformal metric is given by § = p~2g. It was
shown in [62}72] that any four-dimensional conformally Einstein manifold satisfies

(1) divgW —=W(,-,-,Viogp) =0, (ii) B=0. (6.8)

Conditions (i)—(ii) above are also sufficient to be conformally Einstein if (V, g) is
weakly-generic. In our case, it is easy to check that Riemannian extensions gp & 7
for T" nilpotent are not weakly-generic (see Chapter [I).
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From now on we introduce the notation:
£ =2Hes, +pp— i{ZAg@ +ep7}g and E=divyW — W(,-,-, Viog ).
For the Riemannian extension (7, gp ¢,7), We compute
Evy =204,0z,0, Evy =204,0,0, Exyy =204, 0,9,
to show that any solution of Equation must be of the form
oot a® zy,my) = A", 2z + Bz, 2%)zy + (o', 27), (6.9)

for some smooth functions A, B and 1/ depending only on the coordinates (z!, z?).
This shows that any solution of the conformally Einstein equation on (7%, gp o 1)
is of the form ¢ = ¢t X + ¥ o 7, where (X is the evaluation of a vector field X =
Adp + B0z on X, ¢p € C°(X) and 7 : T*Y — 3 is the projection.

Although in some cases we shall discuss some interesting families of anti-self-
dual and conformally Einstein manifolds, our main purpose is to construct strictly
Bach-flat examples with DT # 0 (examples with 7" parallel were previously con-
structed in Chapter [3).

6.4.1 Locally homogeneous setting

For a Type A or Type B homogeneous affine surface we investigate the existence of
nilpotent tensor fields so that the corresponding nilpotent Riemannian extension is
Bach-flat. We begin with a simple case.

Example 6.14. Setting
Priyt=0, Priy2=0, Pript=1, PTp2=1, Pyl =0, PIyn?=0,

we have a Type A affine surface which is not flat since the Ricci tensor of D is
pP = —(dx' — dz?)%. Despite of the Bach-flat condition is quite complicated, there
exist many examples of nilpotent tensor fields of type (1, 1) which give rise to Bach-
flat manifolds. For instance, if «;’s are smooth functions of one variable, then the
following nilpotent endomorphisms lead to Bach-flat manifolds:

T = as(z?)\/ 2" + aq(2?) {0, @ dz?},
T := as(z')y/e2® + oy (2) {02 @ dz'} .

176



6.4 Examples of Bach-flat manifolds

In the rest of this subsection we consider nilpotent tensor fields 7" € M»(R), i.e.,
T has constant entries in the given coordinates and analyze Type A and Type B affine
surfaces by separate.

Example 6.15. Let D be a Type A structure on R?, i.e., the Christoffel symbols of
D are constant. The Ricci tensor is symmetric in this setting. Let 0 # T € Ms(R)
be nilpotent. Make a linear change of coordinates to ensure 7' = 9,1 ® dz?. A direct
computation shows B8 = 0 if and only if ’T';;2 = 0 and (PT'y;1)%? — PT'y; ! PIyp? =
0.

If (T*%, gp,o,r) is Bach-flat and ® = 0, then (7%, gp o 1) is anti-self-dual
and conformally Einstein. Indeed, if Drt = P12 = 0 and PT152 = 0, then the
conformal metric g0_2gD7<p,T is Einstein just taking ¢ = x1/ e~ "Tiz'a? yf bt =
DT1;2 = 0 and PT52 # 0 then 4,0_291),@711 is an Einstein metric with conformal
factor ¢ = e~ T2 +PTple? - qp Dr12 = 0 and PTy;' = PT'y5? then again
p=2x e~ "T12'2” defines an Einstein conformal metric.

Next we construct strictly Bach-flat Riemannian extensions considering the case
PPt =Pr12 =0and assuming D192 = 0. In this case,

le,Wﬂ = 8x1(1)11(331,1’2) - 2DF122(I)11(1’1,.T2) .

A straightforward calculation shows that the possible conformal functions take the
D 2.1, D 1.2 . .
form ¢ = pe™ T2"@ +7T272% (with 1, € R) and, in such a case,

Exp = (p(arl,:cQ,xl/,:cQ/)(I)H(xl,xQ) .
Hence, we conclude that if

(1)11(.%1,x2) 75 0 and 8x1®11($1,$2) - 2DF122(I)11($1, :ZJ2) 75 0,
ie., ®1q(z!, %) # 2" T12°% P(32) where P is a smooth function depending only
on the coordinate 2, then (T*%, gp,a,1) is strictly Bach-flat.
Moreover, since (Dg ,1)0,2 = —PT1920,1, we have DT # 0 in this case.

Remark 6.16. Let (X, D) be a Type A surface. Since any Type A surface has pl), =
0, the invariant 5; = 0 whenever it is defined. Hence the invariant (o is not defined
in this setting.

Example 6.17. Let D be a Type B structure on R™ X R, i.e., the Christoffel symbols
of D take the form PT';;* = (21)71C;;*. Let 0 # T € Ms(R) be nilpotent. The
map (z!,22) — (2!, ax? + bx') defines an action of the “ax + b" group on such
structures and modulo such an action, we may assume 7' takes one of the following
two forms:
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(1) T = 0,1 ® dx?. A direct computation shows that (T3, gp,» 1) is Bach-flat if
and only if 0112 = 0and (Cnl — 1)(0111 — 0122) =0.

(2) T = 9,2 @dx'. A direct computation shows that (T*%, gp ¢ 1) is Bach-flat if
and only if Co! = 0 and Cs22(C1a! — C902) = 0.
Case (1). In this case, p” is symmetric if and only if C1a" + Cay? = 0.
Case (1.1) 0112 = O, 0111 =1
First of all, note that DT" # 0 in this case since (Dg_,1)0,1 = — C;%Q 0,1 and
(Dazl T)0,2 = 1761122 Oy

x
Assume that p? is non-symmetric, i.e., C1o' + Co2? # 0. Then (T*Y, 9D,®T)
is not half conformally flat. Moreover, a straightforward calculation shows that the
possible conformal functions take the form ¢ = (2!)27C12" P(22), where P is a
smooth function depending only on the coordinate = and, in such a case,

—2(21)3 E191 = C12' (5 — 4C19%) — Cno?.
Hence, p” non-symmetric and Cao? # Ci2'(5 — 4C122) imply (T*%, gp,o,1) is
strictly Bach-flat.

If ,oD is non-symmetric and Cy? = 0121(5 — 40122), we distinguish two cases
depending on C}22 equals 1 or not. If Cj92 = 1 then a straightforward calcula-
tion shows that (7%, gp &,7) is conformally Einstein if and only if Py (zt, 2%) =

A(z?) — %952) + %53)221 and the possible conformal functions take the form ¢ =
2! P(2?), where A, B and P are smooth functions depending only on the coordinate
x? satisfying

2P"(2%) + A(2®)P(2?) =0, 201" P'(2?) + B(z*)P(2?) = 0.

If C122 # 1, then it is easy to check that (T*%, gp,or) is conformally Einstein if and

4(0221+2(C;21;%2(0122_1)) and the possible conformal functions

only if ®1q (2!, 2?) =
take the form ¢ = p(21)2~12* where 1 € R.

Remark 6.18. In a more general setting, without imposing the non-symmetric con-
dition on p”, assume C122 # 1 and ®11 (2!, 22) = P(x?) # 0, where P is a smooth
function depending only on the coordinate x> with P’ # 0. In this case, we compute
O, 051051 ((21)PWH) = —4(C122 — 1) P(2?) so (T*Y, gp,e,r) is not half confor-
mally flat. Moreover, a straightforward calculation shows that the possible conformal
functions take the form ¢ = (:cl)Z_Cl?Q,u (with i € R) and, in such a case,

0,2 (E22) = go(a:l,xQ,xll,ajgf) 8x2<1>11(x1, xz) .
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6.4 Examples of Bach-flat manifolds

Therefore, we conclude that if C122 # 1 and ®1;(z!,22) = P(z?) # 0 with
P'(z%) # 0, then (T*Y, gp.o,r) is strictly Bach-flat.

Invariants 3; and 3, in Case (1.1) (C1;2 = 0,C11' = 1)
In this case, assuming that p” is non-degenerate, one has
Br = (Ci2" + C?)2PA™H
where
A = 2(2 - 0122)0122(561)2(1)11 - 4(2 - 0122)201225611‘1/
— (4C12% + 1)(C12Y)? + 4(C12% — 2) O (C122)?
— (C22%)? 4+ 2(1 — 2(C12? — 1)C12?)C12' Cop? .

It now follows that 3; = 0 if and only if the Ricci tensor p” of (X, D) is symmetric.
Moreover 31 is a non-zero constant if and only if either C12%2 = 0, in which case

C1ol4+Can2)2 Chal+C992)2 . .
B1 = (i or Cia’ = 2. and then ) = — (i3  Further,if 6y i

non-zero then one has

Bo = {(C12? + 3)%(z')2®@11 + 2(C12% — 2)(C12* + 3)%zlzy
—2(C12% 4 3)2C122Ca0t — 2((C12% — 1)C122 + 3)(C22%)?
—2((4C12% + 9)C122 + 6)(C121)?

—2((3C122 — 4)C12% — 9)C12 Co 2} AT,

which is generically non-constant.
Case (1.2) C11% = 0, C122 = Oy !
In this case DT is determined by

1
(Do, T)0y1 = —%axl, (Do, T)dy2

0121 - 0222 Cll1
g T@ﬁ + 76x2 .

If pP is non-symmetric, i.e Cia" + Cag? # 0, then (T*%, gp,»,) is not half
conformally flat and, moreover, a straightforward calculation shows that the possible
conformal functions take the form ¢ = (z1)11" P(22), where P is a smooth function
depending only on the coordinate 2%. In such a case,

Ei19 = (.%'1)72(0222 — 0121)(p(.%'1, .%'2, zy, .%'2/) .
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Hence, if pD is non-symmetric and Cao? #* Ci2' then (T*X, gp,o 1) is strictly Bach-
flat.

Now, if ,oD is non-symmetric and Cy? = C2' then a straightforward calcula-
tion shows that (T*X, gp ¢ 1) is conformally Einstein if and only if @11 (2!, 2?) =

A(2?) — Bif2) + 20221(:53?)1211+1) and the possible conformal functions take the form

¢ = (21)%11" P(22), where A, B and P are smooth functions depending only on the
coordinate 2 satisfying

2P"(2?) + A(z®)P(z%) = 0, 2C12  P'(2?) + B(z*)P(2*) = 0.

Invariants 3; and /3, in Case (1.2) (C1:2 = 0, C12%2 = C11')
Assume that p” is non-degenerate. Then
Br = (Cra' + Cpa?)? A1
where
A =201 (2")2®y — 4(Cp M) 2atay — (4(C1h)? 4+ 1)(Crah)? — (C?)?
— 40111 Ol + 20121 Co02 .

Therefore ;1 = 0 if and only if the Ricci tensor of (X, D) is symmetric. Moreover,
one has that 31 is a non-zero constant if and only if C11' = 0, in which case 31 =

1 2)2
—%. Furthermore, if p® is non-degenerate and (3; # 0, then

Bo = {4(Ci1t 4+ 1)%(21)2®; — 8(C1it +1)2C1 M)z
— 2(0111 + 2)(0222)2 — 8(0111 + 1)20221
— 2(0111(80111 + 9) + 2)(0121)2 + 4(3C111 + 2)01210222}A_1 .

Case (2). In this case, p” is symmetric if and only if C12' = 0.
Case (2.1) 0221 = O, 0222 =0

If p? is not symmetric, i.e., C12* # 0, then (T*X, gp,® 1) is not half conformally

flat. Moreover, a straightforward calculation shows that the possible conformal func-

_Crpla? . . .
tions take the form ¢ = e~ =T  P(x'), where P is a smooth function depending

only on the coordinate 2! and, in such a case,

1.2

.2 <($1)3e01§11 512) = —4(C12")2P ().

Hence, we conclude that if pD is non-symmetric then (7%, g p,»,T) 18 strictly Bach-
flat. Moreover, DT' # 0 since (Dg , T')0,2 = _Cip! 0y2.

1
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Invariants 3; and (3, in Case (2.1) (Ca2' = 0, C222 = 0)

Assuming that p® is non-degenerate, one has
Br = (Ci2")’A™
where
A = (C12" ) {—2(z")? @90 — 4C12 2 2y — 4C11 ' C1o® + 4011 °Crat — 1}

One now checks that 31 is never constant in this case. Moreover, if p"J 1S non-
degenerate and 3; # 0, then

B2 = (Cr2M)2{(21)2®99 + 2012  xtae — 12C122 — 2C112C10t — 4
—2(C111)? = 8(C12%)2 — 6(C2?2 + 1)Cp1 '} AL,

It follows that 35 is constant if and only if 2C1;' + 4C12% + 3 = 0, in which case
B2 = —3.

Case (2.2) Ozl = 0, Cg2 = C4o!

If pD is non-symmetric, i.e., Oyt = 0, then (T*Z,gD,q;,T) is not half confor-

mally flat. A straightforward calculation shows that the possible conformal functions
Cyolz?
take the form ¢ = e F P(z!), where P is a smooth function depending only on

the coordinate 2! and, in such a case,
1,2 1 1.2
(x7)&12 = —2C12" p(x', 7, @17, x9r) -

Hence, we conclude that if pD is non-symmetric then (73, gD7¢,7T) is strictly Bach-
flat. Moreover, (Dy , T)0,2 = —0121612 and therefore DT # 0.

1

Invariants 3; and (3, in Case (2.2) (Ca2' = 0, C2% = C121)
In this case, p” is non-degenerate if and only if C15'C12? # 0. We get

Bl = —(0122)72’
P — (1)@ — 2C1a wlwy — 4(C12%)? — 2012%) (C12®) 2.

In contrast with the previous cases, 31 is constant while 35 is never constant.

181



General examples of Bach-flat manifolds in neutral signature

6.4.2 Non-locally homogeneous setting

Example 6.19. Impose the relations of Remark [6.3] and set
DF112 =0, DFHl = —83615, DF122 = —89015 + 06’8,

for smooth functions ¢ = c¢(2?) and B = S(z!,2?). We consider the nilpotent
endomorphism given by T, =0,7% =0, 7%, = 0and Ty = e/, where fisa
function f(x!, z?). This yields Bach-flat manifold if and only if

0=0d,f <2ceﬁ F O ﬂ) 2y f)? — Dy O f -

In particular, any function f = f(x?) will work in this instance. Further, assume that
¢ = 0 and 9,1 PT12" = 0. In this case, p” is symmetric if and only if 9,1 PT'922 +
20,1028 = 0.

If 0,1 PT992+20,10,2 8 # 0 then (T*Y, gp o 7) is not half conformally flat since
Wi = —0,1PT99% — 20,10, 8. Moreover, a straightforward calculation shows that
the possible conformal functions take the form ¢ = ¢™# (2" 2%) P(x?), where P is a
smooth function depending only on the coordinate 22 and, in such a case,

E12 = —gp(xl, 127 x1’7w2’)(8a:1DF222 + 2axla:c2/8) :

Hence, we conclude that if pD is non-symmetric then (7%, gp ¢,7) is strictly Bach-
flat. Moreover, in this case, DT = 0 if and only if 9,13 = 0 and PT'j5! — PT552 +
f'=0.

Let us impose further relations interchanging the roles of the indices to specialize
the remaining three Christoffel symbols:

DF112 = 0, DF111 = — xl/B, DF122 = — xlﬂ + CBB, for c= C(l‘z),

DTyl =0, Pryp?=—0,28, PTiol =—0,28+ce?, for é=é(z!).

Then, in addition, we have the solutions 7" = ef 0,2 ® dx' where f is a function
f(x!, 2?) satisfying

0= axzf@&eé + (%@B) — 2(8322];)2 — 8w28$2f.
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(194

Un problema central na xeometria de Riemann ¢ a existencia de métricas “Optimas”,
¢ dicir, aquelas cuxa curvatura ten a propiedade de ser a mellor distribuida uniforme-
mente sobre unha variedade. O enfoque para determinar tales métricas xeralmente
céntrase en atopar métricas criticas para algins funcionais naturais de curvatura.

Sexa M unha variedade compacta e 74 a curvatura escalar dunha métrica pseudo-
Riemanniana g en M. O funcional de curvatura mdis simple e mdis natural definido
sobre o espazo de métricas vén dado pola integral da curvatura escalar: S: g +—
S(9) = [, 79 dvoly, onde dvoly é o elemento de volume determinado pola métrica
g. Unha métrica g dise S-critica cando o seu tensor de Ricci p; — %ng se anula,
onde p, denota o tensor de Ricci de (M, g). Como a curvatura do funcional S é
sensibel a reescalamentos da métrica, a sia accidn restrinxese a métricas de volume
constante. As métricas criticas correspondentes son as métricas de Einstein. Polo
tanto, poderiase argumentar que as métricas de Einstein, € dicir, aquelas cuxo tensor
de Ricci € proporcional 4 métrica, son as métricas Optimas mdis naturais sobre uhna
variedade pseudo-Riemanniana.

As métricas de Einstein son dalgunha maneira insignificantes en dimensién dous.
O teorema de Gauss-Bonnet mostra que S(g) = 4mx[M], onde x[M] denota a ca-
racteristica de Euler de M, e por conseguinte tédalas métricas son S-criticas en di-
mension dous. O caso en dimension tres € moi rixido e as métricas de Einstein son
xusto aquelas de curvatura seccional constante. De feito, son localmente isométricas
4 pseudo-esfera, ao espazo pseudo-Euclidiano ou ao espazo pseudo-hiperbdlico. A
primeira situacién non trivial ddse en dimension catro. A clasificacién de métricas
de Einstein en dimensién catro € un problema amplamente aberto e unha pregunta
central € a existencia de tales métricas.

Existen diversas estratexias para construir métricas de Einstein. Unha constru-
cién clédsica consiste en deformar unha métrica dada por un factor conforme tal que
a métrica se convirta nunha métrica de Einstein tras un axeitado reescalamento con-
forme. Unha variedade de Riemann (), g) dise conforme Einstein se este enfoque
ten éxito, ¢ dicir, se existe un representante Einstein na clase conforme [g]. Unha
segunda estratexia mais recente fai uso do fluxo de Ricci, o cal baixo condiciéns
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apropiadas converxe a unha métrica de Einstein. Non obstante, existen métricas que
permanecen invariantes (salvo reescalamentos e difeomorfismos) baixo o fluxo de
Ricci: os soliténs de Ricci.

Brinkmann mostrou en [[14] que unha variedade (M, g) de dimensién n é con-
forme Einstein se, € s6 se, a ecuacion

1
(n—2)HeSga+90p—E{(H—Q)Asoﬂm}g:o

ten solucidn positiva. A pesar de que en dimensién dous a ecuacién € trivial, en
dimensidns superiores a sda integracion é sorprendetemente dificil e ademais esta é
sobredeterminada na maioria dos casos. Ademais unha métrica conforme Einstein
no caso Riemanniano, se existe, € Unica salvo homotecias [14,/106]]. Un problema
importante € caracterizar espazos conforme Einstein por certas ecuacions tensoriais
mais manexdbeis.

Sexa (M, g) unha variedade conforme Einstein e supofiamos que § = €%?¢g é
Einstein. Como as métricas de Einstein tefien tensor de Weyl harmodnico tense tri-
vialmente que div W = 0, onde W denota o tensor curvatura de Weyl da variedade
(M, g).0 feito de que o tensor de Weyl se reescale baixo transformaciéns conformes
implica que (diva W)(X,Y, Z) + W(X,Y, Z,Vo) = 0 é unha condicién necesaria
para que (M, g) sexa conforme Einstein. Unha segunda condicién necesaria obtense
da seguinte maneira: sexa W: g — W(g) = [,, [[W||? dvol, o funcional curvatura
determinado pola norma L? do tensor curvatura de Weyl conforme. As métricas
Wh-criticas foron caracterizadas por Bach en [6], onde mostra que unha métrica de

dimension catro é VW-critica se, e 30 se, o tensor de Bach B = divy divy W + §W[p]

¢ identicamente nulo. Claramente toda métrica de Einstein resulta Bach-chd (5 = 0).
Mais ainda, unha caracteristica especifica en dimensién catro € que W € un invarian-
te conforme e polo tanto as métricas conforme Einstein son métricas Bach-chds en
dimension catro.

Kozameh, Newman e Tod mostraron en [72] que 4s ddas condicidns necesarias:

(i) B=0, (i) (divaW)(X,Y,Z)+W(X,Y,Z,Vo)=0,

son suficientes para ser conforme Einstein se (M, g) é debilmente-xenérica, é di-
cir, o tensor de Weyl visto como unha aplicaciéon 7'M — ®3 T'M ¢ inxectiva. No
caso Kihler a situacion € simple, pois toda métrica Kihler Bach-chd é conforme Ein-
stein [48]]. A pesar de todos estes resultados, a clasificacion de variedades conforme
Einstein é, a dia de hoxe, un problema aberto, con tan s6 resultados parciais. Ver por
exemplo [75] para unha clasificacién de variedades produto conforme Einstein.

O noso propdsito na Primeira parte desta monografia é abordar a clasificacion
de métricas conforme Einstein en dimensién catro para o caso homoxéneo. A ho-
moxeneidade permite unha simplificacion da ecuacién conforme Einstein, reducindo
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a Ecuacién [(T)]a un sistema de ecuaciéns alxébricas mediante o uso das condiciéns
na Ecuacién As métricas de Einstein homoxéneas en dimension catro foron des-
critas por Jensen [70]], quen mostrou que no caso Riemannianno estas son simétricas.
Polo tanto, son localmente un “space form” real ou complexo, ou son localmente
un produto de duds superficies de igual curvatura de Gauss constante. A situacién
conforme Einstein é mdis rica, por iso o Capitulo 2] destinase a probar o seguinte
resultado:

Theorem Sexa (M, g) unha variedade de Riemann de dimension catro ho-
moxénea, conforme Einstein, completa e simplemente conexa. Enton (M, g) é lo-
calmente simétrica ou é homotética a un dos seguintes grupos de Lie determinados
polas seguintes dlxebras de Lie solubles:

(i) A dlxebra de Lie g, = Rey x t> dada por

les,e1] = e1, [es €] = Tea +aes, [es,e3] = —aes + fe3.

(ii) A dlxebra de Lie g, = Rey % b2 dada por

le1,e2] =e3, [es,e1] =e1—aer, [eq,ea] = aer+ter, [es,e3] = 2es3.

(iii) A dlxebra de Lie g, = Rey % > dada por

les,e1] = €1, [es,ex) = (a+1)%ea, [es,e3] = a?es, a>1.

Aqui {e1,...,es} é unha base ortonormal. Ademais, os grupos de Lie (Gy, (-, - ))
na afirmacion (ii) son semi-conformemente chans.

En resumo, para métricas conforme Einstein en dimensién catro, a férmula da
sinatura de Hirzebruch mostra que as métricas auto-duais e anti-auto-duais son tamén
Bach-chas. Como consecuencia directa da andlise no Capitulo[2] obtemos unha clasi-
ficacion de métricas homoxéneas que son estritamente Bach-chas, € dicir, aquelas
métricas que non son conforme Einstein, nin semi-conformemente chés:

Theorem Sexa (M, g) unha variedade de Riemann de dimension catro ho-
moxénea, Bach-chd estrita, completa e simplemente conexa. Enton (M, qg) é ho-
motética a un dos grupos de Lie determinados polas seguintes dlxebras de Lie solu-

bles:

(i) A dlxebra de Lie g = Rey % ¢(1,1) dada por
[e2, 3] = e1, le1, es] = (2+V3) e2,

[e4,e1] = V6 + 3/3en, [e4,€2] = V64 3V3es.
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(ii) A dixebra de Lie g = Rey % b dada por

le1, ea] = e3, leq,e1] = 3V 7 —3V5ey,
[e2.ea] = 1VT+3VBes,  es,ed] = T\/\/%es-
Aqui {e1,...,e4} € unha base ortonormal.

E un feito notable que os dous exemplos do Teorema foron previamente cons-
truidos por Abbena, Garbiero e Salamon []1]].

Un paso crucial na proba do Teorema [2.1] e na proba do Teorema [2.4] ¢ a des-
cricién que fai Bérard-Bergery [9]] das variedades homoxéneas de Riemann en dimen-
sién catro: estas son, ou simétricas, ou un grupo de Lie cunha métrica Riemannia-
na invariante pola esquerda. Claramente, unha afirmacién andloga non funciona
nos casos Lorentziano e de sinatura neutra, pois os espazos homoxéneos pseudo-
Riemannianos non son necesariamente redutivos. Os espazos homoxéneos non re-
dutivos en dimensién 4 foron clasificados por Fels e Renner [54]]. Neste traballo,
empregamos explicitamente a stia clasificacion para determinar todalas métricas con-
forme Einstein non redutivos. No Capitulo[3|o teorema principal € o seguinte:

Theorem Sexa (M, g) un espazo homoxéneo de dimension catro conforme Ein-
stein e non redutivo. Enton (M, g) é Einstein, localmente conformemente chan ou
localmente isométrico a:

(i) (R, g) coa métrica determinada por
g = (4b(2?)? + a) dx! o dat + 4bx? dz' o da?
— (4axzx* — 4c2® + a) dz' o dz® + 4ax? dx! o dz*
+bdz? o dx?® — 2(ax* — ¢) da? o da® + 2a dx? o dx,
onde a, b e c son constantes arbitrarias tales que ab # 0.

(ii) (R*, g) coa métrica determinada por
g = (4b(22)% + a) dx' o dzt + 4bx? dz* o dz?
— (4az?x* — 4ca® + a) da' o da® + dax?® dx' o dxt
+bda? o dz*—2(az? — ¢) dz? o dz3+2a da® o dz* — 3¢ dad o da?,
onde a, b e c son constantes arbitrarias tales que ab # 0.
(iii) (R%, g) coa métrica determinada por
g = —2ae?*" da' o dad + ae?® da? o da?
+ bda? o dx® + 2¢dx® o da* + g daz? o da?,

onde a, b, c e q son constantes arbitrarias tales que abq # 0.
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(iv) (U C R*, g.) coa métrica determinada por
g+ = 2a€¥”’ dz' o dz* + ae®’ cos(x*)2da? o da?
+ bda® o da® + 2¢da® o da* + g daz? o da?,

onde $f = {(x',... 2%) € R*/ cos(z?) # 0}, e a, b, c e q son constantes
arbitrarias tales que ab # 0 e b # —q, ou

(R*, g_) coa métrica determinada por
g- = 2ae® dz' o dat + ae®®’ cosh(z?)2da? o da?
+ bdz3 o da® 4 2¢da o dz* + qdz? o da?,

onde a, b, c e q son constantes arbitrarias tales que ab # 0 e b # q.

Mdis ainda, todolos casos (i)—(iv) estdn na clase conforme dunha métrica Ricci-chd,
a cal é unica (salvo homotecias) so no Caso (i). Noutro caso, o espazo das métricas
conformes Ricci-chds é de dimension dous o tres.

Unha segunda aproximacion madis recente para levar a cabo a construcién de
métricas de Einstein vén dada polo fluxo de Ricci, € dicir, unha familia 1-paramétrica
de métricas ¢(t) sobre unha variedade M que satisfai a ecuacion % 9(t) = —2py).-
O fluxo de Ricci estd ben formulado no contexto Riemanniano no sentido de que para
toda variedade pechada M e toda métrica inicial g(0), existe unha tnica solucién g(t)
para ¢ suficientemente pequeno. Hamilton en [|64]] mostrou que o fluxo de Ricci con-
verxe a unha métrica de Einstein baixo condicions axeitadas, mostrando asi a existen-
cia de métricas de Einstein. Unha observacion importante € que, se a métrica inicial
g(0) é Einstein, entén permanece invariante baixo o fluxo (salvo reescalamento ho-
motético). Polo tanto, unha solucién do fluxo dise que € auto-similar se permanece in-
variante baixo reescalamentos e difeomorfismos. Tales soluciéns, usualmente referi-
das como soliténs de Ricci, estdn caracterizadas pola existencia dun campo de vec-
tores X en M tal que

Lxg+p=2Ay, (3)
onde £ denota a derivada de Lie e A é unha constante real. Os soliténs de Ricci son
polo tanto xeneralizaciéns das métricas de Einstein e sda clasificacién é un problema
importante para entender o fluxo de Ricci. Se X € un gradiente, entén a Ecuacion|[(3)]
convértese en

Hesy +p = Ag, (4)
para algunha funcion potencial f, e (M, g, f) dise un soliton de Ricci gradiente.

A xeometria do tensor de Ricci depende fortemente do signo das curvaturas de
Ricci. Mentres a curvatura de Ricci positiva € unha condicién moi forte con con-
secuencias topoldxicas, Lohkamp [80] mostrou que toda variedade admite métri-
cas completas con curvatura de Ricci negativa. Correspondentemente, o estudo dos
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solitons de Ricci depende do signo da constante A do solitén; un solitén de Ricci
(M, g, X) dise contractivo, estdbel ou expansivo se A > 0, A = 0 ou A < 0, respec-
tivamente.

Mentres que se coflecen certos resultados de clasificacidn para soliténs de Ricci
gradientes, o caso xenérico |(3)| é ainda bastante descofiecido. Incluso no caso ho-
moxéneo, non existe ainda unha clasificacién completa en dimensioén catro. Tendo
en conta que todalas métricas invariantes 4 esquerda Bach-chds se realizan sobre gru-
pos de Lie resolubles (cf. Theorem [2.T)and Theorem[2.4)), tense a seguinte descricién
dos soliténs Bach-chans homoxéneos.

Theorem Sexa (M, g) un solitén de Ricci Riemanniano de dimension catro
homoxéneo, Bach-chan, completo e simplemente conexo. Entén (M, g) é Einstein,
un soliton de Ricci gradiente localmente conformemente chan da forma N3(c) x R,
onde N3(c) é un espazo de curvatura constante, ou homotético a un dos seguintes
solitons de Ricci alxébricos determinados polas seguintes dlxebras de Lie solubles:

(i) A dlxebra de Lie g, = Rey x t> determinada por
1 1
lea,e1] = e1, [es,ea] = jea +ae3, leq, €3] = —aea + je3.

(ii) A dlxebra de Lie g, = Rey X 3 determinada por

[ea,e1] = e1, [es,ea] = (a+1)%eq, [eq,e3] = e, a>1.
(iii) A dlxebra de Lie g = Rey x b3 determinada por

[e1, e2] = e3, lea,e1] = V7T —3V5e,

[e2,e4] = %\/7%— 3v5 ea, les, eq] = %63.

A ecuacién do solitén de Ricci gradiente|(4)| codifica a informacidn da variedade
en términos da curvatura de Ricci e da segunda forma fundamental dos conxuntos
de nivel da funcidén potencial f. Como o tensor de Ricci determina completamente
a curvatura no caso localmente conformemente chan, fixéronse moitos esforzos para
obter unha clasificacién de soliténs de Ricci gradientes baixo algunhas condicidns
do tensor curvatura de Weyl. No caso Riemanniano os soliténs de Ricci gradientes
localmente conformemente chans son localmente produtos warped con base de di-
mension 1 [S5] e tense unha descricién completa para o caso completo contractivo e
estdbel [35,94]. A situaciéon Lorentziana permite outras familias de exemplos cuxa
estrutura subxacente ¢ a dunha onda plana [[17]].

Foron investigadas suposiciéns mdis débiles sobre o tensor de Weyl conforme.
A propiedade de ser semi-conformemente chd é un exemplo importante. Mentres
os soliténs de Ricci (anti)-auto-duais son localmente conformemente chans no caso
Riemanniano [39], o caso de sinatura neutra permite exemplos non triviais [|16]] dados
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por extensions de Riemann de solitons de Ricci gradientes. Xeneralizando a situacién
semi-conformemente cha, solitons de Ricci gradientes Bach-chans foron investigados
en [34]]. Os soliténs de Ricci gradientes expansivos completos Bach-chans, asi como
os soliténs de Ricci gradientes estdbeis con curvatura de Ricci positiva cuxa curvatura
escalar alcanza un méximo nalgin punto interior, son localmente conformemente
chans na categoria Riemanniana.

O noso obxectivo na segunda parte desta monografia é mostrar a existencia de
solitons de Ricci gradientes Bach-chans estritos no caso de sinatura neutra. Ista pre-
gunta estd motivada pola existencia de soliténs de Ricci gradientes auto-duais que
non son localmente conformemente chans [[16]. As métricas desexadas constriense
por unha perturbacién das extensions de Riemann clasicas introducidas por Patterson
e Walker [92]. Sexa (X, D) unha superficie afin, sexan 7" ¢ ® un campo de tensores
paralelo de tipo (1, 1) e un campo de tensores simétrico arbitrario de tipo (0, 2) so-
bre ¥ respectivamente. Os datos (X, D, T, ®) determinan unha métrica de signatura
neutra sobre o fibrado cotanxente 73 dada por

gp,e,r =T olT +gp + 7@, [3)

onde ¢ denota a aplicacion avaliacién sobre o fibrado contanxente, 7w : 7% — ¥ € a
proxeccidn candnica e gp denota a extension de Riemann de Patterson-Walker.

No Capitulo @ mostramos que as métricas [(5)] provén unha grande familia de
variedades Bach-chds estritas. En efecto,

Theorem Sexa (X, D, T) unha superficie afin libre de torsion equipada cun
campo de tensores paralelo T de tipo (1,1). Sexa ® un campo de tensores simétrico
arbitrario de tipo (0, 2) sobre ¥.. Enton o tensor de Bach de (T*%, gp & 1) aniilase
se, e s0 se, T' é un miiltiplo da identidade ou é nilpotente.

Se T' ¢ un miiltiplo da identidade, ent6n as métricas gp ¢ 7 son auto-duais e entén
son de especial interese no caso nilpotente (1> = 0, T' # 0). Ademais, como o campo
de tensores deformacién ¢ non xoga ningtin papel no Teorema[.1] este pédese usar
para construir unha familia infinita de variedades Bach-ch4s non isométricas para cal-
quera (D, T) sobre X.. Unha eleccién adecuada de ® permite a construcién de novos
exemplos de soliténs de Ricci gradientes Bach-chans estdbeis, onde por notacién,
®(X,Y) = ®(TX,TY) na Ecuacién [[6),

Theorem Sexa (X, D, T') unha superficie afin equipada cun campo de tensores
paralelo nilpotente T de tipo (1,1) e sexa ® un campo de tensores simétrico de tipo
(0,2) sobre ¥. Sexa h € C*°(X) unha funcién diferenciable. Enton (T*Y, gp o 1,
f = hom) éun solitén de Ricci gradiente Bach-chan se, e s6 se, dh(ker(T)) =0 e

& = — Hes —2pP . [(6)]

Ademais o soliton é estdbel e isotropico.
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Destacamos que a funcién potencial correspondente ten hipersuperficies de nivel
dexeneradas e a sua estrutura subxacente nunca é localmente conformemente chd, en
contraste coa situacién no caso Riemanniano. No Teorema [.1] as métricas pseudo-
Riemannianas nunca son auto-duais, pero poden ser anti-auto-duais nalgins casos.
Este feito permite a construcidn de soliténs de Ricci gradientes anti-auto-duais que
non son localmente conformemente chans, simplemente requirese que ambos 7" e ¢
sexan paralelos.

Theorem Sexa (X, D, T, ®) unha superficie afin con tensor de Ricci simétrico
equipada cun campo de tensores paralelo nilpotente T de tipo (1,1) e un campo de
tensores paralelo simétrico ® de tipo (0, 2).

(i) (X, D, h) é un soliton de Ricci gradiente afin con dh(ker(T)) = 0 se, e 50 se,
(T2, 95 3.1+ f = hom) é un solitén de Ricci gradiente estdbel e anti-auto-
dual que non é localmente conformemente chan.

(ii) (3, D, h) € un soliton de Ricci gradiente afin con dh(ker(T")) = 0 se, e s se,
existen coordenadas locais (u', u?) en X tal que o tinico simbolo de Christoffel
distinto de cero estd determinado por “T'11% = P(u') + u?Q(u') e a funcion
potencial h(u') estd determinada por h" (u') = —2Q(u'), para todos P, Q €

C®(%).

A construcién no Capitulof|require da existencia de superficies afins que admitan
un campo de tensores paralelo e nilpotente, o cal é bastante restritivo. Polo tanto, no
Capitulo [5| investigamos a existencia de campos de tensores paralelos de tipo (1, 1)
sobre superficies afins. Dise que un campo de tensores 7' é unha estrutura Kéhler
(resp. para-Kihler), se T é paralelo e T? = —1Id (resp. T? = Id). Ademais T é
Kihler nilpotente se 72 = 0 e DT = 0. Como a traza de todo tensor paralelo é
constante, podemos expresar 7' = 5 tr(7) Id +(T — 1 tr(7') Id) de tal xeito que se
descompona nun multiplo escalar da identidade e un campo de tensores sen traza.

Se (X, D) é unha superficie afin con tensor de Ricci anti-simétrico ch # 0,
enton ch define un elemento de volume. Mas ainda, ch dise recorrente, € dicir,
ngc =w® ch para algunha 1-forma w. Os campos de tensores paralelos de tipo
(1,1) sen traza poden reescalarse para ser Kihler, para-Kihler ou Kéhler nilpotente
cunha condicién de recorrencia:

Theorem Sexa (X, D) unha superficie afin simplemente conexa con p? # 0.

(i) (2, D) admite unha estrutura Kihler se, e s6 se, det(p?) > 0 e pP? é reco-
rrente.

z

(ii) (X, D) admite unha estrutura para-Kdhler se, e sé se, det(pP) < 0e pP ¢
recorrente.
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(iii) (X, D) admite unha estrutura Kdhler nilpotente se, e so se, pSD é de rango un
e recorrente.

As superficies con tensor de Ricci anti-simétrico (equivalentemente p? = 0)
admiten simultaneamente estruturas Kihler, para-Kihler e Kéhler nilpotente (ver
Lemma [5.6). Usamos superficies homoxéneas afins para ilustrar o Teorema [5.1]
mostrando que todas as posibilidades distintas poden realizarse. Os resultados na
Seccién [5.3] dan expresions explicitas de estruturas paralelas Kihler nilpotentes so-
bre superficies homoxéneas.

Finalmente, dentro do Capitulo[6|consideramos algunhas xeneralizacions do Teo-
rema [4.1] para a construciéns de extensiéns de Riemann Bach-chds cun campo
de tensores 1" non paralelo. O Teorema estende a construcién do Teorema 4.1|
mostrando que a extensién de Riemann (773, g D7¢7T) determinada por un campo de
tensores nilpotente 7" non paralelo segue sendo Bach-cha baixo algunhas condiciéns
na conexidén afin. A pregunta subxacente estd baseada en determinar as condiciéns na
conexion unha vez que se proporciona o endomorfismo nilpotente. Reciprocamente,
poderiamos considerar o problema inverso de construir endomorfismos nilpotentes
en X tal que a extension de Riemann [(5)] € Bach-chd unha vez que D estd determi-
nada. Usamos o Teorema de Cauchy-Kovalevski para mostrar que toda extension de
Riemann de Patterson-Walker pédese deformar localmente por un campo de endo-
morfismos nilpotente adecuado para ser Bach-chd na categoria real analitica.

Theorem Sexa (3, D) unha superficie afin real e analitica. Enton existen cam-
pos de tensores nilpotentes T de tipo (1, 1) definidos localmente tales que a extension
de Riemann modificada (T*X, gp & 1) é Bach-chd.

E importante destacar o feito de que os invariantes escalares da curvatura das
extensions de Riemann modificadas [(3)] son nulos se, e s6 se, 7' € nilpotente (Teo-
rema [6.8). Polo cal na Seccion [6.3] introducimos algiins invariantes novos que non
son de tipo Weyl. Estes invariantes, que dependen fortemente da curvatura de Ricci
de (X, D), permiten distinguir algunhas clases de isometrias de métricas Bach-chas.
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Einstein manifolds, being critical for the Hilbert-Einstein
functional, are central in Riemannian Geometry and
Mathematical Physics. A strategy to construct Einstein metrics
consists on deforming a given metric by a conformal factor so that
the resulting metric is Einstein. In the present Thesis we follow
this approach with special emphasis in dimension four. In this
Thesis we classify four-dimensional homogeneous conformally
Einstein manifolds and provide a large family of strictly Bach-flat
gradient Ricci solitons. We show the existence of Bach-flat

structures given as deformations of Riemannian extensions by

means of the Cauchy-Kovalevskaya theorem.
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